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Abstract

The computational sciences are generating an ever-increasing amount of data. This
data needs to processed just as fast. The data comes from tomographies, images of
distant star systems, gene sequencing, 3D projections, or similar real-world structures.
Processing the data normaily includes computing several tensor proa’ucts or solving
other such linear systems. Since we are processing multiple gigabytes or even terabytes
of data, we really want to utilise GPGPUs, with which we can process more than

one calculation of data simultaneously.

In this thesis, I show several optimisations for the modular array-programming frame-
work Bohrium. I look into already established ways of optimising bytecode together
with introducing extension methods, a way fo call external libraries, for Bohrium.
These extension methods are being automatically generated when Bohrium is being
compiled or installed, thus we are able to link against different libraries depending
on the runtime. I also discuss programmer productivity, a term which defines why it
is important that the programmer is able to maintain their code and write new code.
With programmer proa'uctivity, we look at the programming ianguage Rnby and
implements a new front end for Bohrium using it. This front end grants the ability
to produce fast array-programming code in Ruby.

Lastly, and somewhat separate, I talk about a new Ruby framework for Commu-
nicating Sequential Processes. This framework makes it easy to emulate a CSP

network with communications and is also producing fast results.



Resumé

Beregningsvidenskaberne genererer en stadigt stigende mangde data. Dette data skal
behandles lige si hurtigt. Data kommer fra tomografier, billeder af fierne stjerne-
systemer, gensekvenser, 3D-projektioner eller lignende strukturer fra den virkelige
verden. Behandling af data omfatter normalt beregning af flere tensorprodukter eller
losning af andre sidanne lineere systemer. Da vi behandler flere gigabyte eller endda
terabyte data, vil vi virkelig gerne bruge GPGPU’er, hvorved vi kan behandle mere
end én beregning af data samtidigt.

I denne afhandling viser jeg adskillige optimeringer til Bohrium, et modulert array-
programmeringsrammeveerktoj. Jeg undersoger allerede kendte mdder at optimere
bytecoden pd, samt kommer med metoder til at kalde eksterne biblioteker pd, i Bo-
hrium. Disse metoder genereres automatisk, ndr Bohrium kompileres eller installeres,
sd vi kan linke mod forskellige biblioteker afhaengigt af korselsmiljo. Jeg diskuterer
ogsd programmeringsproduktivitet, et begreb, der definerer, hvorfor det er vigtigt, at
programmeoren kan opretholde deres kode og skrive ny kode. Med programmerings-
produktivitet ser vi pd programmeringssproget Ruby og implementerer en ny front
end til Bohrium ved hjeelp af det. Denne front end giver mulighed for at producere
hurtig army—programmeringskode i Ruby.

Endelig, og lidt adskilt, kigger jeg pd et nyt Ruby rammeverktoj for “Communicating
Sequential Processes”. Dette rammeveerktoj gor det nemt at simulere et CSP-netveerk

med kommunikation, og det giver ogsd hurtige resultater.

il
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CHAPTER

INTRODUCTION

N the last three years, I have worked with optimisations for the Bohrium

framework as well as creating a CSP (Communicating Sequential Processes)

framework for the programming language Ruby. In this thesis, I present that work,
the considerations that went into it, and results from the various optimisations.

The thesis is thus separated into two parts — Bohrium and CSP - since these
are two distinct topics.

My work began with investigating various optimisations already in place
in tools like gcc and 11vm. From there on, I went into the world of array-
programming and tried to use some of the same optimisations here. I looked into
utilising already established external libraries in Bohrium because these have often
been optimised already. A new templating approach was used instead of hand
implementing all the wrapper functions from the various library methods.

I also wanted to spread the word of Bohrium even further than the Python
community, so I developed a new front end for it using Ruby. This new front
end I named Bohrium.rb'. With this new Ruby front end, all Ruby programmers

can partake in increased speeds for their array-programming tasks.

L vb is the common filename extension for Ruby files.
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Parallel to my work on Bohrium, I looked into CSP and how to use it in
practice. Ruby does not have a CSP framework of its own. This led me to develop
my very own CSP framework, called Emir, in Ruby. Emit ended up being a small
DSL (Domain Specific Language) for CSP code, that also performs rather well.

In the following thesis, I describe both my work and contributions to Bohrium,
with the Ruby front end and templating of library methods, as well as my work
on CSP with Emit. All of this is laid out in the diagram in Figure 1.1.

Programmer Productivity
Filters Broadcast
4 1
Extension .
tensio Teaching
Methods
N 1
Bohrium.rb Emit
Parallel Concurrent
Parallel and Concurrent Programmer Productivity

Figure 1.1: Project overview.



6 CHAPTER 1. INTRODUCTION

1.1 Contributions

This thesis begins by displaying three very different contributions to the automatic
acceleration framework Bohrium. First I show a couple of filters I have added
to Bohrium. These filters clean up some of the mathematical no-ops that other
optimisations might produce.

The second Bohrium contribution is extension methods and how I have auto-
mated the code generation for some of them. This code generation is viable even
for the general case.

Thirdly, a new Ruby front end for Bohrium has been made. Ruby is a pro-
gramming language very similar to Python, which was the first front end for
Bohrium. However, Ruby has only recently gotten some traction in the scientific
fields with various new scientific packages, one of which I will compare against in

Chapter 5.

[ investigated various algebraic methods for speeding up the Bohrium inter-
mediate language, essentially speeding up both the generation and execution of
kernels from within Bohrium. The methods are described in Chapter 2 together

with a background for other optimisation techniques.

Another contribution I made, has been the implementation of the CSP frame-
work Emit in Ruby. As already hinted at Emit seems to work nicely as a CSP
framework and have been shown to be quite fast as well.

Furthermore, I co-authored a paper defining what is meant by broadcast in
CSP and introduced it into algebra, as well as showing that it works with the
formal verification tool FDR.

Because of my knowledge in CSP, I also co-advised a master student in her
master’s project as well as with an article, that we co-authored. The topic of
both was transpiling SME (Synchronous Message Exchange) to CSP); (Machine-
readable CSP).

1.1.1 Bohrium Filters

The filters try to look at the bytecode generated at runtime within Bohrium to
optimise the execution time. As Bohrium is built from disjoint components we
can easily create filters that can be turned on and off at runtime. These filters each

lean on various already established compiler optimisations, but can go further,



1.1. CONTRIBUTIONS 7

since we have better knowledge when trying to create kernels from the bytecode.
We can use the filters to contract mathematical statements and to remove no-ops

from the bytecode sequence.

1.1.2 Automatic Extension Methods

Extension methods are the Bohrium way of saying external library functions. Since

Bohrium works with tensors!

in an array-programming paradigm, it can utilise
external libraries for working with these in a linear algebra fashion. A common
library for linear algebra is BLAs. BLAS exposes roughly 145 different functions,
which, if you want to utilise the entire library, will need to be implemented within
Bohrium with various unpacking and repacking of the arrays. This can be done
by hand but will be a tedious job. Automating this task, and similar tasks for other

external libraries, with the help of templating, has helped out Bohrium a lot.

1.1.3 Bohrium.rb: The Ruby Front End

With Bohrium we aim a lot for programmer productivity, but also want per-
formance in the end. The Ruby front end makes it easy to program Ruby with
Bohrium without losing said performance. Since Ruby is quite new in the scien-
tific field, the competition for being fast and easy is still ongoing. As shown in [1],
I manage to outperform both the standard library and another, already known,
array-programming library, by implementing a new array API (Application Pro-
gramming Interface) utilising Bohrium for large computations.

The work done with Bohrium.rb is detailed in Chapter 5.

1.1.4 Emit: Communicating Sequential Processes for Ruby

A different aspect of high-performance computing is verification. Communicating
Sequential Processes is an algebra used to describe process networks. Networks
written with CSP can be verified using tools such as FDR [2]. With my contribu-
tions, Ruby has now got a CSP framework of its own, that is also quite fast. In
it, you can execute and emulate your CSP networks. This framework borrows
a lot from the already established PyCSP framework [3, 4], which has also been
written at the University of Copenhagen.
This work is discussed in Chapter 7.

LA tensor is a n-dimensional matrix. Vectors can be thought of as being 1-dimensional matrices.
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1.2 Publications

This section contains an overview and abstracts of the ten articles I have written

or contributed to. I am the first author on six of them.

One paper for the 19th VVorkshop on Compilersfor Parallel Computing, one for
the 5th Exascale Applications and Software Conference, six papers for the WoTUG
Conference on Concurrent and Parallel Systems (over several years), one workshop
paper for the Ist International Workshop on Next Generation of Cloud Architecture
at ACM EuroSys 2017, one positional paper for the Doctoral Symposium at the
ACM/IFIP/USENIX Middleware Conference 2017.

The papers are all included in the appendix, Part 111, beginning on page 97.

1.2.1 Current Status and Directions for the Bohrium Run-time
System

Mads Ohm Larsen, Kenneth Skovhede, Mads R. B. Kristensen, and Brian
Vinter, CPC 2016, 19th Workshop on Compilers for Parallel Computing, Valladolid,
Spain

In this paper, we present the current status of the Bohrium run-time system for auto-
matic pamllelization ofarray—programming languages and libraries. We demonstrate how
the design of Bohrium makes it possible to utilise different hardware platforms — from
simple multi-core systems to clusters and GPU enabled systems — without any changes to

the original user program.

1.2.2 Broadcasting in CSP-Style Programming

Brian Vinter, Kenneth Skovhede, and Mads Ohm Larsen, Proceedings of Com-
municating Process Architectures 2016, the 38th WoTUG conference on concurrent and
parallel systems, Niels Bohr Institute, University of Copenhagen

While CSP-only models process-to-process rendezvous-style message passing, all
newer CSP-type programming libraries offer more powerful mechanisms, such as buffered
channels, and multiple receivers, and even mulliple senders, on a single channel. This work

investigates the possible variations of a one-to-all, broadcasting, channel. We discuss the
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dﬁrent semantic meanings of broadcasting and show three dyﬁrercnt possible solutions for
adding broad-casting to CSP-style programming.

1.2.3 Algebraic Transformation of Descriptive Vector Bytecode
Sequences

Mads Ohm Larsen, Middleware 2016, Proceedings of the Doctoral Symposium of the
17th International Middleware Conference, Trento, Italy

Both high-productivity and high-performance are two often sought after aspects of
scientific programming. Python gives the programmer high-productivity, but even with
NumPy, it is often not high-performant because of the GIL, which makes it inher-
enlly single threaded. Bohrium intercepts NumPy calls and generates an intermediate
language, Bohrium bytecode, before being compiled to OpenCL kernels. It thus grants
Python/NumPy the ability to be easily run on multi-core systems or GPUE, without
changing the source code. The Bohrium bytecode can be optimised, by transforming bytecode
sequences into more performant ones. This way, the scientific programmer will not need to

change her code to utilise special performant constructs.

1.2.4 Imaging Data Management System

Brian Vinter, Jonas Bardino, Martin Rehr, Klaus Birkelund Jensen, and
Mads Ohm Larsen, EuroSys ’17, Proceedings of the 1st International Workshop on
Next generation of Cloud Architecture, Belgrade, Serbia

In this work, we present an integrated system aimed at data management and processing
for scientific areas that work with very large data-sets. The Imaging Data Management
System, IDMS, seeks to support researchers in all steps of their research, starting with the
transfer of data from the lab, over managing and analyzing the data, to final archiving of
the essential research project results. While IDMS is in fact hosted locally at the university
we seek to provide a user experience that is as close as possible to a generic cloud system,

in order to allow users to share and collaborate on their data seamlessly from anywhere.
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1.2.5 Automatic Code Generation for Library Method Inclusion
in Domain Specific Languages

Mads Ohm Larsen, Proceedings of Communicating Process Architectures 2017, the
39th WoTUG conference on concurrent and parallel systems, Department of Computer
Science, University of Malta, Malta.

Performance is important when creating large experiments or simulations. However,
it would be preferable not to lose programmer productivity. A lot ofeﬁbrt has aiready
been put into creating fast libraries used for for example linear algebra based computations
(BLAS and LAPACK). In this paper, we show that utilising these libraries in a DSL made
for productivity will solve both problems. This is done via automatic code generation and

can be extended to other ianguages, libraries, and features.

1.2.6 Teaching Concurrency: 10 Years of Programming Projects
at UCPH

Brian Vinter and Mads Ohm Larsen, Proceedings of Communicating Process Archi-
tectures 2017, the 39th WoTUG conference on concurrent and parallel systems, Department
of Computer Science, University of Malta, Malta.

While CSP is traditionally taught as an algebra, with a focus on definitions and proofs,
it may also be presented as a style of programming, that is process-oriented programming.
For the last decade, the University of Copenhagen (UCPH) has been teaching CSP as a
mix of the two, including both the formal aspects and process-oriented programming. This
paper summarised the work that has been made to make process-oriented programming
relevant to students, through programming assignments where process orientation is clearly

sirnpler than an equivalent solution in imperative programming style.
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1.2.7 Case study: Bohrium - Powering Oceanography Simulation

Mads Ohm Larsen and Dion Hifner, EASC 2018, 5th Exascale Applications and
Software Conference, Edinburgh, Scotland

A 1’1/!116]01/1/71 ofhow Veros uses Bohrium was Sl/lppllé’d as a one-page abstmcl.

1.2.8 Emit - Communicating Sequential Processes in Ruby

Mads Ohm Larsen and Brian Vinter, Proceedings of Communicating Process Archi-
tectures 2018, the 40th WoTUG conference on concurrent and parallel systems, University
of Dresden, Germany.

CSP is an algebra for reasoning about concurrent systems of processes. Being able to
do so has become a necessity for computer scientists. Having to think about abstractions
like mutexes and threads in practice can be cumbersome, complex, and erroneous. Ruby as
a programming language has been described as fun to program in. It is, however, missing a
CSp framework that it can call its own. Emit, which is presented in this paper, tries to
mitigate this by providing such a CSP framework. As a CSP framework, Emit makes it
easy fo think about processes, channels, and communication. It is not yet featme—complele,
however comparing it to its nearest peer, PyCSE, shows good performance for the comm-
STIME benchmark, where Emit is 100 times faster.

1.2.9 Bohrium.rb - The Ruby Front End

Mads Ohm Larsen and Brian Vinter, Proceedings of Communicating Process Archi-
tectures 2018, the 40th WoTUG conference on concurrent and parallel systems, University
of Dresden, Germany.

The acceptance ofRuby in the scientiﬁc community lags a bit behind, partly because
it is missing a good library for linear algebra and vector programming. It has a matrix
class in its standard library, but its execution tends to be rather slow. Only a couple
of actual scientific computing libraries like NumPy for Python exist for Ruby. In this
paper, we introduce a new library called Bohrium.rb. Bohrium.rb acts as a front end
for the Bohrium framework, which generates and runs JIT-compiled OpenMP/OpenCL
kernels. It currently supports Python/NumPy and C++, however as it is built of processes
communicating hierarchically to each other, we can replace the front ends with new ones.

This new Ruby front end is described with examples and is then compared to the standard
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libmry and an already established Rnby library Numo/Narray, where Bohrium.rb seems
to be faster for still larger matrix calculations. This is also the trend we have seen in similar

areas with Bohrium, being faster once its overhead has been amortised.

1.2.10 Towards Automatic Program Specification

Alberte Thegler, Mads Ohm Larsen, Kenneth Skovhede and Brian Vinter,
Proceedings of Communicating Process Architectures 2018, the 40th WoTUG conference

on concurrent and parallel systems, University of Dresden, Germany.

This paper introduces a method to simplify hardware modelling and verification
thereof in order for software programmers to, more easily, meet the demands of the growing
embedded device industry. We describe a simple method for transpiling from the new SME
Implementation Language into CSPyy and using formal verification to verify properties
within the generated program. We present a small example consisting of a seven segment
display clock network and introduce how to verify the widths of the channels in the
network.

This paper won the best paper award at Communicating Process Architectures
2018.






CHAPTER

BACKGROUND

2.1 Computational Science

trend we have seen through the last couple of decades are large amounts of

data being produced from the various sciences [5]. This amount of data has
been ever increasing. In some sciences, this data is several terabytes of tensors,
which could all stem from a single or a couple of input values. We also see large
images or projections, for example in astronomy or from tomographies [6].

The data is often manipulated with linear algebra techniques, for example,
solving linear systems, tracing, summing or otherwise calculating from the data.
Having terabytes or more of tensor data will become difficult for most applications
and computers to work with. Often, for example with tomographies, you can work
on reconstruction or segmentation in one layer or maybe a few layers at a time,
slicing the tensors into small matrices or tensors with a smaller dimensionality.
These data sets, however, will still be fairly large and thus not pleasant to work
with because of an inherent drop in programmer productivity, a term we will
come back to later.

One thing we can do is to lighten the burden for the programmer to create
clever ways of manipulating data for various reasons. Often we try to optimise

for L1 and L2 caches by reading and writing sequentially. For example, when

14
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we read data, if we read it like the caches believe we do, we will get a speed-up,
since we might have already preloaded the next cells in our tensor automatically.
Instead, if we read randomly from a large tensor, we might skip around and read

a bit here and a bit here, invalidating the caches for every read.

2.2 Compiler Optimisation

Instead of handling the various difficult areas of the code by hand, we often rely
on the compilers to help us. That is, the tools we use for our code should help us
out by changing minimal things behind the scene, before giving the end result to

us as programimers.

This section lists and explains some general purpose optimisation techniques
for imperative programming languages, especially some of the optimisations used
in gcc (GNU C Compiler) [7].

Local and Global Optimisations We start with the two main methods of
optimisation. When we optimise we can either optimise locally or globally. What
that means is that we can optimise a single function call or block of code, or we
can try to optimise the entire program as a whole. What we do will largely impact
the end result, since a more global optimisation approach will be better but also

requires more computing and thus time for the compiler to figure out.

There is no one optimisation solution to fit all, so the following optimisation
techniques all fall into the category of either local or global optimisation, some

can even be both, but each time we have to choose how much code to look at.

Peephole Optimisations Peephole optimisations are usually one of the last steps
in the compilation process, just as we go into machine code. I describe it first since
it is the simplest of the optimisations. With peephole optimisation, we look at a
single or very few instructions following each other. These might be swapped,

combined, or even deleted for faster and more specialised execution.

One such optimisation would be left shifting an integer instead of multiplying
it by factors of 2 or right shifting instead of dividing by factors of 2. This works
only with integers but is faster since we do not have to involve an ALU (Arithmetic
Logic Unit) in the process of shifting.
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We can delete operations that do not do anything anyway. We call these op-
erations “no-ops”. Such an instruction could be an addition of 0 or multiplications
with 1.

Loop Optimisations Several optimisation techniques fall under the category
of loop optimisations, because, for most programs, the loops are where most of
the time is spent computing. This also means that loop optimisations might be the
most important of the optimisations.

Here follow some subparagraphs with examples of different ways to optimise

loops.

Induction Variable Analysis If a variable inside a loop is a linear function
of the index variable of the loop, such as seen in Listing 2.1, we can update that

variable together with the index variable every time.

int j;
for(int i = 0; i < 10; ++1) {
3 =2 « 1+ 2;
// Use j for something...
}
(a) Before.
for(int i = 0, int 2; 1 < 10; ++i, 3 += 2x1) {
// Use j for sc 9. ..
}

(b) After.

Listing 2.1: Linear induction variable.

If the index variable is only used for this computation, we might be able to

factor it out, via dead code elimination, as well.

Loop Fission and Fusion One loop computing multiple different things
can both speed-up or slow-down the code execution, depending on what is going
on in said loop. An example of loop fission, where we split a loop into two loops
for increased performance can be seen in Listing 2.2a. Here we assume that » and s
are already initialised with some values. These values are then read from the arrays
and are summed together in two separate integers. a and & might not be close to
each other in memory, which can cause several jumps back and forth in memory

to read all values. These jump might invalidate cache or disrupt prefetching on
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a hardware level. Splitting it into two loops, that loop over each array might be

faster as seen in the example in Listing 2.2b.

#define 1000
int t, s, A[N], B[N]; // Initialise A and B with integer values
for (int i = 0; i < N; 1i++) {
t += A[i];
s += B[i];
}
(a) Before.
for (int i = 0; i < N; i++) |
t += A[i];
}
for (int i = 0; 1 < N; 1i++) {
s += BI[i];
}
(b) After.

Listing 2.2: Loop fission.

Fusion is the opposite of fission. Here we instead merge loops, when possible, to
have a lot of work done in each iteration. A classic example is shown in Listing 2.3a.
Here we have a couple of arrays that are each indexed in a similar way in two
loops. We can instead merge the two loops. However, just merging them means
that we will index the same 711 twice in each loop iteration as seen in Listing 2.3c.
Instead, if we can guarantee that T will not be used anywhere else in the program,
we can just update the a array directly, thus saving indexing into 1. This is done
because the actual data of a, 5 and r might be far from each other in memory, and

therefore might not be easy to fetch and update together.

Optimise the Common Case Let us say that you have a function with many
branches (if-statements). If it is always the first path that is being taken, we might
just create a separate function, that only contains these, without the actual branch
look-ups. That is, imagine having the code in the first part of Listing 2.4. Here
we see two branches that, depending on the argument, will take the same path.
We can imagine larger functions or maybe several functions stitched together,
that share this behaviour. Instead, we can split it into two functions. In the second
part of Listing 2.4 I show two functions where the first is what is being done if

the argument is 1 and the second when it is something else.
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#d ne N 1000

doublAe»AA[N]A, B[N], TI[N];

for(int i = 0; 1 < N; ++i) {
T[i] = B[i] = A[i];

}

for(int i = 0; i < N; ++1) {

A[i] += T[i];
}

(a) Before (1).

for(int i = 0; i < N; ++i) {
T[i] = B[i] = A[i];
Ali] += T[i];

(b) Before (2).

for(int i = 0; 1 < N; ++i) {
double t = B[i] * A[i];
Ali] += t;

(c) After.

Listing 2.3: Loop fusion.

Avoid Redundancy Avoiding redundancy is both a discipline for the program-
mer as well as the compiler. If you as a programmer are computing the same result
twice or more, the compiler can reuse the result from the first calculation instead
of recomputing it. We thus store the initial result in a register somewhere and
load it from there, when we are asked to recompute it.

Of course, as can be seen in Listing 2.5 the calculation needs to be without
side-effects, or else we would indeed have to redo them. Simple redundancy

avoidance comes from maths terms, that are condensed to simpler terms.

Less Code When optimising for less code, we want to remove unnecessary in-
termediate computations. This usually results in less code being executed, because
we can optimise better, when not storing intermediate values. Listing 2.6 shows a
very simple program, where if a is not used anymore, then removing it completely
will result in less code. Since we no longer need to save a copy of a, our stack is
also smaller.

Of course, here we can go even further and use constant folding on the rest

and reduce the statement down to int b = 156;.
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int function(int arg) {
if (arg == 1) {

// (la) Do something

} else {

// (1b) Do something else

}
// (2) Do more stuff

if (arg == 1) {

// (3a) Do something

} else {

// (3b) Do something e

}

I~

se

(a) Before.

int functionl (/# int arg
// (la) Do some
// (2) Do more stuf
// (3a) Do something

int function2 (int arg) {
// (1b) Do something
// (2) Do more stuff
// (3b) Do something

else

else

Listing 2.4: Optimising the common case.

(b) After.

double a = f(7);
double b = £(7);

// Some

heavy calculation

without side-effec

(a) Before.

double a = f(7);
double b;
memcpy (&b, &a,

// Some

sizeof Db);

heavy calculat

// Copy the

ffects

ion without side-

contents of a into

(b) After.

Listing 2.5: Avoid redundancy.

Strength Reduction Strength reduction can be a powerful optimisation on

some architectures. Sometimes using a simpler instruction will require less compu-

tation time. Instead of dividing by a constant, we can multiply with its reciprocal,

or instead of calculating the exponentiation with an integer we can multiply that

many times.
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int a = 2 % 2;
int b = a * 4;
// a is not used more in this program
(a) Before
int b = 2 « 2 * 4;
(b) After.

Listing 2.6: Less code.

The following equation shows this relation:

n

"= x-x-...-x :]_[x ifneN
—_—
n

Because multiplication with integers is a simpler instruction than exponentia-
tion, it will compute faster on some architectures and thus we might be able to do
multiple of these in the same amount of time.

As an example, we can change x1? into several multiplications of smaller powers

This means, that if we first compute x> we can use this further on, and instead
of doing 10 multiplications we can get away with only 5 without the need for
extra variables. We can do with 4 integer multiplications if we can have more
temporary variables. In pseudocode, this would look like Listing 2.7.

The reasons that we might want to limit ourselves to fewer temporary variables
come in memory size. For integers, it might not be a problem, but as we will
see later (subsection 2.3.2 on page 25) the thing we are doing exponentiation on
could be a large array of integers instead. Copying a large data structure around

in memory, just to throw it out afterwards might be a bad idea.

Common Sub-expression Elimination Much like optimising for less code or
redundancy avoidance, common sub-expression elimination will find calculations

that have already been done and reuse the results.
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double x = 123.4; // Any r
double result = pow(x, 10); // Calculate x to the 10th power

// Instead your compiler will calculate (with no extra variable)

double result = x * Xx; /) x"2

result = result * result; // x"4

result = result * result; // x"8

result = result * x; // x"9

result = result * x; // x~10

// ... or even (with one extra variable)
double result = x * X; /) x"2
double tmpl = result * result; // x4
tmpl = tmpl * tmpl; // x"8
result = result * tmpl; // x~10

Listing 2.7: Strength reduction with exponentiation.

Examples of common sub-expression elimination can be seen in Listing 2.8.
Here Listing 2.8a has a + b twice. This can be factored into a separate variable as
seen in Listing 2.8b. We also see a bit of algebraic rewriting in Listing 2.8c, as the

compiler figures out, that a variable divided by 4 is the same as it is divided by 2

twice.
int r = (a + b) / 2 + (a + b) / 4;
(a) Before (1).
int ¢ = (a + b);

int r =c¢c / 2 + c / 4;

(b) Before (2).

int ¢ = (a + b) / 2;
int r c +c / 2;

(c) After.

Listing 2.8: Common sub-expression elimination.

Constant Folding Again, like the less code optimisation, constant folding will
look into precompiling constants into the most condensed form.

When having constant values the right hand side of the expression could be
computed at compile time, thus eliminating the need to recompute it for every

use. In Listing 2.9 we have merged 2 + 2 into a single . This could propagate
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through a lot of variables and thus end in multiple variables becoming obsolete.

These obsolete variables will be removed with dead code elimination later on.

const int a = 2 + 2;

(a) Before.

const int a = 4;

(b) After.

Listing 2.9: Constant folding.

Constant folding is useful for computing constants at compile-time. Thus, we
end up with a program, that has the result already built in, instead of having to
evaluate the code each and every time we run the code. Since this is a constant,
we should be safe doing so.

Code Factoring  Some functions can be optimised with common sub-expression
elimination however if they are not identical, we cannot just replace it in this
manner. If a block of code only differs by some parameters, we can however
still do something like common sub-expression elimination. The compiler can
automatically wrap the code block in functions and afterwards parameterize those

functions with the differences between two code blocks.

int a = ... + 2 + ;
int b = 4 + ;
int f(int a) {
return ... + a + ...; // again the same complex calculation

}

int a = £(2);
int b = £(4);

(b) After.

Listing 2.10: Code factoring.

Shown in Listing 2.10 is code factoring. Here we move a complex calculation
into a function, which is parameterized with the difference between the two calcu-

lations. Now the function can be optimised on its own, and both the calculations
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will benefit from it.

The examples shown in this section are all done directly in the C-code, how-
ever, this might not be how the compiler sees the code. The compiler can optimise
both before and after converting the code into some intermediate representation
(IR), assembly language, or bytecode. When we later look into optimising the
Bohrium IR, we will only look at the bytecode, since the Bohrium JIT-compiler
does not have access to the actual script being executing, but is rather just handed

the bytecode to optimise.

2.3 Bohrium

Bohrium is a very modular framework with both multiple front ends and back
ends and many components in between. It provides a way to speed-up array-
programming.

Array-programming [8] is a way of thinking that exploits data properties
where elements are similar. With array-programming, we look at groups of data
instead of the traditional object-oriented view. We can thus perform a uniform
function on the data. Usually, we perform these operations without the need to

explicitly state loops of scalar operations.
plicitly p P

The name Bohrium comes from the element of the same name, discovered
by Danish physicist Niels Bohr. Since the framework was created at Niels Bohr
Institute for use by computational sciences the name Bohrium seems fitting.

This section will contain a bird’s eye view of Bohrium and only some compo-
nents will be explained in detail.

Bohrium was created by Mads R. B. Kristensen et al. [9, 10, 11] in 2013 and

have since undergone several improvement phases.

2.3.1 Overview

Bohrium is made to lazily record array operations, such as those from NumPy [12],
and combine them into a bytecode instruction set, in an internal intermediate
representation (IR). This IR is then compiled into architecture specific kernels and
executed.

Internally Bohrium consists of a number of components, that communicate in a

sequential way, passing on their output and options to the next component. These
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components can be interchanged and are all specialised for different purposes. You
do not need to use all components for all executions since there exists multiple front
and back ends and various optional components for optimisation. An overview of
these components can be seen in Figure 2.1 and will be outlined in the following

paragraphs.

[ Python/NumPy ] C++ Ruby

| |

[ NumPy Bridge ] C++ Bridge e Ruby Bridge

l

Block of
Bytecode

l

Bytecode
Optimisation

l N\

K— [ Bytecode Fusion

[ GPU Back end ]

¥>[ CPU Back end ]

Figure 2.1: Bohrium component overview.

||

Front End The front ends are the access points. This is what the user sees
and programs for. These are for example C++, Python and Ruby (more on the
Ruby front end in Chapter 5). Bohrium itself does not favour any language or
library but can have any number of front ends, as long as there is some kind of

array-programming involved.
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Bridge For the front ends to be able to enter Bohrium "land", we have a bridge.
The bridge is unique for each front end, as it is the bridges job to translate between
the front end (the host language) and Bohrium.

Bytecode Optimisation Before we execute the bytecode generated by the
bridge, we can optimise the IR. Bohrium does this in a number of ways. A

description of the optimisations being done can be found in Chapter 3.

Bytecode Fusion After we are done with bytecode optimisations, Bohrium will
seek out to fuse as many instructions into one kernel as possible.

The fusibility is determined by the back end since some back ends might have,
for example, a data-parallel criterion. Another common criterion is that shapes
of arrays being worked on must match. Fusing together bytecodes will make
sure that we compute as much as possible in each kernel, instead of wasting time

transferring data back and forth between the front and back end.

Back end The back end will take the fused IR and actually generate and execute
the kernels. Bohrium supports multiple back ends and can thus generate various
kinds of kernels. These kernels will be architecture specific and can target CPUs
or GPUs.

2.3.2 Bohrium Bytecode

The internal representation of Bohrium’s bytecode is a simple language without
conditionals and loops. At the time of writing it consists of 79 different opcodes.
These all take one, two, or three operands as arguments, depending on the opcode.
The operands can be either scalars or multi-dimensional tensors. The size of
the tensor depends on the operation being computed as some operations require
operands of the same size while other, for example, the reductions reduce the
number of elements in the result tensor.

When we print the IR we have exactly one opcode per line. These lines should
be read as follows: First the name of the opcode followed by the first operand and
its possible start and end index together with a stride. The second and possibly
third opcode follows the same structure. For example, su_tpentiTy a1(0:5:1] 1
computes the identity of 1 and puts into the result operand, which is always the

first operand, starting from o going to s with a stride of 1.
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A simple example of a Bohrium trace which prints the bytecode sequence can
be seen in Listing 2.11. Here we have two tensors a1 and a2. They both have all
their elements set to 1 with sa_1pentrTv. Afterwards, they are added with eu_aop

and the result is stored again in the first tensor, a1, overwriting it.

BH_IDENTITY al[0:5:1] 1
BH_IDENTITY a2[0:5:1] 1
BH_ADD al[0:5:1] al[0:5:1] a2[0:5:1]

Listing 2.11: An example of Bohrium IR.

Of course, this IR is not executed as is, but rather it is a representation of
what is stored inside Bohrium prior to it generating kernels for the currently
selected architecture and runtime environment. These kernels are generated and
compiled just-in-time. We can thus utilise maximal knowledge about what is
being generated and executed because we know all the indices for all the tensors
as well as the system it should run on. This can both be used to know where to
place the generated kernel, be it the CPU or GPGPU, as well as optimise for the

current case.

2.4 Library Methods

A lot of work has been put into various libraries to make them perform faster calcu-
lations. These are said to be highly hand-optimised. One such library specification
is BLAs [13] (Basic Linear Algebra Subprograms), which have been around since
the late 70’s. The reference implementation of BLas describes how to implement
fast linear algebra methods, both for solving systems or for multiplying matrices.

These types of libraries have been optimised so much, that the compilers cannot
optimise anymore. If they did, the programmers would change the reference
implementation to be this new highly optimised version. This is a good thing
since the compile-time will then also be optimised.

The BLAs implementation, of course, cannot be the fastest when run every-
where, so we specify the implementation even further, having, for example,
libraries such as c1BLAS [14], which is the implementation meant for being run
from within OpenCL programs. This implementation is hand-optimised for fast

execution on graphics cards using OpenCL.
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In order to multiply two matrices in BLas with the C programming language,
we need the code presented in Listing 2.12. In this listing, two matrices ( and s)
are created, having 3000 x 2000 respectively 2000 x 4000 random elements. A
result matrix (c) is also created with room for 3000 x 4000 elements. The equation
being computed here is simply

C=AB

or, when using the mandatory a and g variables

C = aAB+8C

In Listing 2.12 we, however, use @ = 1 and B = 0, thus making them irrelevant.

<stdlib.h>
<stdio.h>
1de "util.hpp"

N
0

100

float sgemm_(const char *transA, const char xtransB,
const int »m, const int xn, const int «k,
const float ralpha, const float %A, const int xlca,
const float %B, const int =*1lcb,
const float *beta, const float xC, const int «*lcc);

int main() {
int n = 3000, k = 2000, m = 4000;

float A[nxk];
float B[k+m];
float C[n*m];

char transA = 'N', transB = 'N';
float one = 1.0, zero = 0.0;
for(int i = 0; 1 < n«*k; ++1) |
A[i] = (float) randint (LOW, HIGH);
}
for(int i = 0; 1 < k*m; ++1i) {
B[i] = (float) randint (LOW, HIGH);

}
sgemm_ (&transA, &transB, &n, &m, &k, &one, A, &n, B, &k, &zero, C, &n);

// defined in util.hpp to print the result matrix
PF s
print_matrix(C, n, m);

return 0;

Listing 2.12: An example program using Bras for multiplying two large matrices.
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One should think that the amount of lines of code is rather high for a simple
case of multiplying two matrices, however, we must remember that the BLAS
library is optimised for many kinds of matrix multiplications. With sgemn (the
method used in Listing 2.12 to multiply) we can also change how the matrices are
indexed as well as transposing none, one, or both matrices prior to multiplying
them. We can indeed also choose to only multiply some of one matrix with some
of the other, by not given the correct sizes for n, m, and k. This, of course, can also
lead to hard-to-find bugs in your programs. We will look more into making this
easier for the programmer in Chapter 4.

2.5 Programmer Productivity

Having the fastest executing program for a certain problem comes at a cost.
Looking back at Listing 2.12, we need more than 30 lines of code to randomly
create and multiply two matrices. That means that every time we multiply two
matrices we need to write around 30 lines of code. This also means that every time
we multiply two matrices, we might have a bug on one of 30 lines of code. The
API for BLas is especially, and subjectively, not intuitive and “friendly” towards the
programmer. Many abstractions exist, but of course, they each have their trade-
offs. In a high-level programming language as Python, we can, with the help of
NumPy [12], instead use matmu1 to multiply two matrices as seen in Listing 2.13.
This listing is both the randomization and multiplication and is fewer lines than

the C example from before.

import numpy as np

n, k, m = 3000, 2000, 4000

a = np.random.rand(n+k) .reshape((n, k))
b = np.random.rand (k+m) .reshape ((k, m))
c = np.matmul (a, b)

Listing 2.13: An example program using matmul for multiplying two large matrices.

This all boils down to a term called “programmer productivity” [15]. That
is the ratio of output versus input. How much do you gain from what you put
into it? Measuring this kind of productivity in a non-manual working context
is hard [16]. We cannot just measure lines of code written or products output as

you would be able to do with a manufacturing job.
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From Casper Jones’ book on programmer productivity [17] we get a few
pointers towards what this term could be defined as. Jones lists metrics such as
“Maintaining and enhancing existing programs or systems” and “The complexity ofthe

program and its data”.

I believe that BLAS is very complex and it is not easy to maintain and enhance
existing programs utilising BLAs. Instead, we should look into methods of wrapping
this high-performance library so that we can still gain from its performance without

having to worry about its internals. Indeed, this is the topic of Chapter 4.

2.6 Communicating Sequential Processes

Communicating Sequential Processes was created by Sir Charles Antony Richard
Hoare [18] to be an algebra used to model networks with process-to-process
communication. It can be verified with tools such as FDR [2].

I have some history with CSP, as I did my master’s thesis on a theoretical part
of exception handling within the algebra [19, 20]. The topic then was a theoretical
inclusion of exceptions and exception handling mostly within the algebra, but
also implemented in PyCSP. Since the CSP algebra does not allow you to model
failure this seemed much needed to be able to model proper networks. A failure
here could be hardware or invalid I/O, such as using unsanitised user input, for
example, in computing simple division using the input as the denominator. This,
of course, is invalid if the user inputs a zero.

During my PhD work, I have taken a slightly different path. Here I will discuss
the findings regarding introducing a broadcast type channel in the CSP algebra
in Chapter 6 on page 60 as well as a newly implemented CSP framework for the
programming language Ruby, called Emit, in Chapter 7 on page 68.

The following sections will contain a brief introduction to CSP algebra and
how to work with it.

2.6.1 CSP glossary

Before we look at what CSP is we need some common ground to start from. Ta-
ble 2.1 contains the notation and meaning of the same that we will use throughout

this section and the rest of the thesis.

All of this notation is described in more detail in the following sections.
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Notation Meaning

a—P Event a then process P.

P|lQ Process P and process Q in parallel.

Pl Q Process P interleaved with process Q.

P;Q Process P in sequence with process Q.

POQ Event from process P or event from process Q (deterministic choice).
v (or SKIP)  Successful termination process.

STOP Deadlock process.

c!x Send the value x on the channel c.

c?x Receive a value on the channel ¢ and bind it to x.
{a,b,c) The trace containing the events 4, b, and c.

Table 2.1: CSP notation.

2.6.2 Processes, Events and Channel Communications

A CSP network is a group of processes. These processes will agree on a common
alphabet, which is their shared knowledge as the network is initiated.

An example of a process in the algebra could be the simple P process that does
nothing and deadlocks (STOP).

P=STOP
This process will not be of much use, so instead, we can imagine a process Q
that engages in an event, 4, and then successfully terminates (SKIP)
Q =a — SKIP

Throughout the rest of the thesis I will use v instead of SKIP as this better
symbolises successful termination.
A useful device for determining what a CSP network is doing is the traces of

the processes. For the previous process Q the trace would be

(a)

In CSP we also have the concept of “choice”. Here we say that the process P

is either a or b followed by the appropriate process.

P=a—QOb—YS)
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Sometimes we use a bar (|) instead of the square to symbolise choice. The se-
mantic difference is that O is deterministic (external) choice, M is non-deterministic

(internal) choice, and | just means any choice.

Processes in CSP can be defined as recursive processes, that is, they are processes

that “become” themselves after a certain number of events, for example

P=a—>P

This process will keep on engaging in the event a indefinitely.

Two processes that run in parallel with a shared alphabet will rendezvous on

the same events. Thus, having the following alphabet (@) and processes (P and Q)

a ={a, b}
P=a—-c—>b->Vv
Q=a—-b->V
P, Q

the trace of this network will be deterministic and be

(a,c,b)

Hoare has a number of great examples of use cases and networks in [18]. One

of them is a broken vending machine, recreated here

VMC = ( in2p — ( large - VMC
| small - outip — VMC)

| inlp — ( small > VMC
‘ inlp — ( large > VMC

|intp— STOP)))



32 CHAPTER 2. BACKGROUND

This vending machine is broken since we can have a trace that ends in deadlock
(STOP). This is done by running the VMC process in parallel with a customer
process that has three in1p in a row. In a larger network with many processes, and
with many choices, this flaw might be difficult to spot, which is why we verify
our networks with tools like FDR [2].

Instead of only rendezvousing on events, CSP processes normally have some
kind of communication via channels. With channels, we can communicate vari-
ables without knowing them beforehand and thus only having the channel name
in the process alphabet. Together with recursion, we can create a network that

just counts down a variable from 10 to zero like so

P(0)=Vv
P(x)=clx > P(x-1)
=?x—>Q0V

P(10) |l Q

This network can be drawn as seen in Figure 2.2 with P communicating with

Q over c. I will use this kind of diagram to represent CSP networks throughout

B2

Figure 2.2: A simple network.

this thesis.

Hoare has many more details on this including semantics and proper formal
definitions in [18].

2.7 The Programming Language Ruby

Since I will be talking a bit about Ruby [21] in this thesis I felt that a short
introduction was in order.

Ruby is an object-oriented programming language, that borrows from its
predecessors Perl, Smalltalk, Ada, Lisp, and more. It was created in 1995 by
Yukihiro Matsumoto in Japan.

Ruby is an interpreted language with dynamic typing, which means that, as

the popular Ruby saying goes: “If it looks like a duck and quacks like a duck, itis a
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duck.”. This is also dubbed “duck typing”. It means that we never check whether
objects are of a specific class, but rather look at what that object can do, to say if it
fulfils a purpose. This is not type coercion, we do not cast objects to other types.

An example is that a lot of objects have a to_s (to string) method, so no matter
what kind of object, be it a string, tnteger, cat, pog, or something else, you get,
you will still be able to call to_s on it.

What we need to know about Ruby for this thesis is that Ruby has modules,
classes, and methods. We also need to know that everything in Ruby is an object,
and can be treated as such.

We can define new classes and methods as shown in Listing 2.14. Here we
create a new class, pog, with a constructor, in Ruby called initiaiize. This class
has two instance methods, vark and to_s. We create a new instance of the class
with the special class method new. Notice that pog here takes an argument that is
passed to the constructor, namely nane, which is used to set the instance variable

ename, so that we can use this further on with the instance.

class Dog
def initialize (name)
@name = name
end

def bark
"Bow wow!"
end

def to_s
"I am a Dog. My name is #{@name}."
end
end

spot = Dog.new("Spot")
puts spot.bark # => "Bow wow!"

puts spot.to_s # => "I am a Dog. My name is Spot."

Listing 2.14: Introduction to Ruby.
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BoHRIUM BYTECODE

OPTIMISATION

EcaUSE we know a lot about the environment that the code is being executed
B in, we can use general and various other compiler optimisations tricks on the
bytecode sequence. In the Bohrium framework, we have a step called “filters”. In
this step, we can apply the various filters in any order we choose to. These filters

can be turned on and off at runtime just like any of the other components.

3.1 Stupid Maths

One such filter is our aptly named “stupid maths” filter. It looks for statements,
that might have been introduced by having run other optimisations. It is called
stupid maths because it looks for multiplication with one or addition with zero.
These kinds of statements could appear in the Bohrium bytecode as computation

carries on.

The filter will change the following into equivalent maths statements:

34
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x-1=>x
x+1=>x

x+0=>x

This is thus just a “cleaning up” filter which removes mathematical no-op

bytecodes generated mostly by other optimisations.

Another filter can detect and contract maths statements with constants, that

then end up using fewer operations to complete. For example

2+3=5 or 3:-4=12

but it can also detect the use of the same variable and contract those, for

example

2x+ 3x = 5x

Here x can be a huge tensor, so contracting the two multiplications into a
single one can save a lot of computation time when actually running the code. This
simple filter could thus save multiple operations on the data for programmers who
might not have optimised this contraction themselves. This type of programming
can be seen in Listing 3.1.

For other more convoluted calculations, it is worth noting the case with

exponents from Section 2.2 again. Here we had

n

"= x-x-...-x :]_[x ifneN

[ —
n

This could be turned into a series of multiplications instead of the power

function.
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import bohrium as np
a = np.arange (10)
print (2xa + 3xa)

(a) Python code using a twice.

BH_RANGE al([0:10:1]

BH_IDENTITY a2[0:10:1] al[0:10:1]
BH_FREE al[0:10:1]

BH_MULTIPLY a3[0:10:1] 2 a2[0:10:1]
BH_MULTIPLY a4[0:10:1] 3 a2([0:10:1]
BH_ADD a0[0:10:1] a3[0:10:1] a4[0:10:1]
BH_FREE a3[0:10:1]

BH_FREE a4[0:10:1]

(b) The Bohrium IR for Listing 3.1a without the contraction filter.

BH_RANGE al[0:10:1]

BH_IDENTITY a2[0:10:1] al[0:10:1]
BH_FREE al[0:10:1]

BH_MULTIPLY a0[0:10:1] 5 a2[0:10:1]

(c) The Bohrium IR for Listing 3.1a with the contraction filter.

Listing 3.1: An example of the maths contraction filter.

In Bohrium this could be generated by the Python code shown in Listing 3.2a
and the turned into Bohrium IR with Listing 3.2b. In this example, I have shown
the original solution in the IR as well. The filter removes the sx_roner and replaces

it with five Bu_murTTPLYS instead.

import bohrium as np
a = np.arange (10)
print (ax+10)

(a) Python code calculating a'?.

BH_RANGE al[0:10:1]

BH_IDENTITY a2([0:10:1] al[0:10:1]
BH_FREE al[0:10:1]

# BH_POWER a0[0:10:1] a2[0:10:1] 10

BH_MULTIPLY a0[0:10:1] a2[0:10:1] a2[0:10:1]
BH_MULTIPLY a0[0:10:1] a0[0:10:1] a0[0:10:1]
BH_MULTIPLY a0[0:10:1] a0[0:10:1] a0[0:10:1]
BH_MULTIPLY a0[0:10:1] a0[0:10:1] a2[0:10:1]
BH_MULTIPLY a0[0:10:1] a0[0:10:1] a2[0:10:1]

(b) The Bohrium IR for Listing 3.2a.

Listing 3.2: Calculating a'°.
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3.1.1 Benchmark

To show off the stupid filter we take a large tensor and add 1 to it several times.
In normal Python we would have to execute all of these additions one by one,
but with Bohrium we can actually collect them into a single addition that is then

executed. This reduces some overhead when working with large tensors.

import numpy as np
from time import time
t0 = time ()

z = np.ones ( (200, 200, 200)
for _ in range (500) :
z += 1

print (np.sum(z))
print ("Ran in {}s".format (time() - tO0))

Listing 3.3: Stupid maths benchmark.

Listing 3.3 shows a simple Python example that generates a large 200x200x200
tensor of only ones and then add 1 to it 500 times. Listing 3.4! shows the Bohrium
IR (trace) for this both with and without the filter turned on.

The execution time reported for the two cases are 4.079s and 0.149s respec-
tively. Thus the stupid maths filter here has increased the general execution per-
formance by a factor 27x. NumPy without Bohrium perform as bad as Bohrium
without the filter, about 4.1s.

1 As to not clutter the example with all the tensor indices and strides, these have been removed
from the listing.
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BH_IDENTITY al 1
BH_ADD al al 1

# 498 times
BH_ADD al al 1
BH_ADD_ REDUCE a2 al 2
BH_ADD_REDUCE a3 a2 1
BH_ADD_ REDUCE a0 a3 0
BH_FREE a3
BH_FREE a2

(a) Trace of benchmark without the stupid maths filter.

BH_IDENTITY al 1
BH_ADD al al 500
BH_ADD_REDUCE a2 al 2
BH_ADD_REDUCE a3 a2 1
BH_ADD_REDUCE a0 a3 0
BH_FREE a3

BH_FREE a2

(b) Trace with the stupids maths filters.

Listing 3.4: Traces of the Python program from Listing 3.3.
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AUTOMATIC EXTENSION

METHODS

NOTHER way to extend Bohrium’s capabilities, other than filters, is with
[ & external libraries. It is very common practice to take in other peoples libraries

and utilise already created algorithms for other purposes.

In scientific computing, the fastest way of multiplying two matrices is with
BLAS [22]. Because of this, everyone who has to multiply two matrices — or other
more convoluted computations — use BLAs. BLAS is just a reference, having multiple
implementations, such as cBLAS, Accelerate! [23], c1BLAS [14], OpenBLAS [24],
GotoBLAS [25], and more. The most efficient of these depends on where your data
lives. In Bohrium the data from the tensors lives inside Bohrium, and thus it might
be infeasible to, for example, just call the BLas methods with the NumPy/Bohrium
array. Doing so might halt the current computation pipeline and yield a copy
of the data which could potentially decrease the overall performance of the code
execution. Especially if the data lives in Bohrium on a GPGPU and have to be
transferred back to the host device prior to being fed into a new GPGPU specific

1Apple’s implementation of BLas.

40
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library that copies it back. Instead, what we can do is to have Bohrium call the

external libraries internally.

In this section, we look at BLas and rapack as examples. Since these libraries
have been through multiple development cycles, they have existed for a long time,
their APIs can be quite inflexible. This can be seen with the aforementioned
implementations of BLas. They all have seemingly identical interfaces, but some
of the namings are slightly different, causing the users to only have the choice of
one of them. As an example, cBLAS and Accelerate have the same interface for
the same architecture, but two different operating systems. c1BLAS has a widely
different interface but does the same calculations as ¢cBLAS albeit on GPGPU .
LAPACKE, a LAPACK implementation for Linux, has a different interface than
Accelerate, which also implements the Lapack methods, again on MacOS. This all
means, that if the programmer would like to have a flexible implementation of
their simulations, they would have to implement the calls with all these different

implementations in mind.

The BLas reference is from a time when Fortran was at the height of program-
ming languages. Fortran is column-major in its memory management, unlike
many programming languages today. This can still be seen in the BLas implemen-
tations, where the programmer needs to take special care about how the program

manages its memory.

A simple call to ¢cBLAS multiplying the matrices A and B can be seen in
Listing 4.1. There are a lot of parameters and things to take note of issuing such a
simple operation in cBLAS. The equivalent statement from Python can be seen
in Listing 4.2. Both of these listings assume that A and B have been initialised
elsewhere. It should be fairly simple to see that the Python version is easier to
follow and to later modify. In this concrete example, both will run with the same
performance, since the NumPy version just translates to the C version behind the

scenes.

Bohrium also implements the matmu1 method, however, here it is done the
regular way, with the naive O(n?) algorithm, first multiplying and then sum-
ming along the various columns and rows in the matrices. BLAS uses Strassen’s
algorithm [26] which is O(n°%27) ~ O(n>3%7). This means that Bohrium will be
slower as n increases. Instead of implementing Strassen’s algorithm for Bohrium,

we want to just link Bohrium against a BLas library.
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// C := alpha#*op (A) op (B) + betax*c
// where op(X) is either X or X T

cblas_sgemm (
CblasRowMajor, // Memory m
CblasNoTrans, // 1
CblasNoTrans, //

= B?

m, // rows of op(A)

n, // ns of op(B)

k, // mns/rows of op (A)/op (B)
1.0, //

A_data, // Array of size m+*k

k, // First dimension of A / Stride of A
B_data, // Array of s

n, // Stride of B

0.0, // Beta

C_data, // Result array of size m#n

n // Stride of C

) i

Listing 4.1: cBLAS general matrix multiplication.

import numpy as np
np.matmul (a, b)

Listing 4.2: Python (NumPy) matrix multiplication.

This is essentially what the extension methods are and what NumPy is already

doing, to achieve the improved performance.

4.1 Code Generation

Since Bohrium has different back ends, we need to be able to link to the correct
libraries, as well as use the correct interfaces. In practice, we create an internal API,
that we can always use, and that we can then change to point to other libraries.
In Bohrium this is implemented as a flush of the current Bohrium instruction set,
followed by a call into the C++ back end. The API for all the extension methods
are the same here, being called with a specific name and all the arrays involved.
All these wrapper APIs are generated when Bohrium is first compiled or
installed on your machine. Here Bohrium will find all the paths that it needs in
order to later link against libraries when JIT-compiling the kernels. If the user has
many different, for example, BLas implementations installed, Bohrium will gather

them all, not choosing anything yet, only choosing at runtime.
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The automatically generated wrapper functions are the heart of the extension
methods. They are generated in three steps. First, we define a JSON-file with all
the methods and their options. Second, we create various templates for the code
generator to fill out. Lastly, we run the actual generator, which combines several
templates into a single source file comprising the extension method.

We could write all the methods for BLas by hand, however, there are many

and this will quickly become a tedious job, as they are quite similar.

4.1.1 JSON

First, we create a JSON-file will all the options that we need. A snippet of such a
JSON-file can be seen in Listing 4.3. The dots here represent the other methods

of BLAS.
{
"methods": [
{

"name": "gemm",

lltypesﬂ. ["S"’ ||dll, "C", "Z"],

"options": [
"layout", "notransA", "notransB",
"pt, Mmook,
mpn, wpm, wcw

Listing 4.3: JSON-file with options for gemn.

When turning all the options into booleans for later use, we can create the four
different types of General Matrix Multiplication (genm) methods for the different
single- and double-precision as well as complex and double complex numbers,
that is sgemm, dgemm, cgemm, and zgemm.

Later, we can create shortcuts to these generated methods that can then be

accessed from the Bohrium front end, here Python.

4.1.2 Templating

After reading in the JSON-file, we parse the various template files that might
accompany it. In this system, we have four different templates. We are abusing

the string interpolation capabilities of a Python library, called pyratemp [27], in
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order to have file inclusion in their templating language. More files could easily be
added. The files in question here are: header.tpl,body.tpl,body_func.tpl,
and footer.tpl.

pyratemp uses a syntax like etvarte to substitute in the contents of that vari-
able. Conditionals are done similar to HTML comments that is <! (if BoorL) >

<!-—(end)-——>.

The header and footer contain the boilerplate code needed for Bohrium to
understand the extension methods. These are the C inclusions, the namespace

definitions, and so on. A sample of a header template can be seen in Listing 4.4.

#include <bh_extmethod.hpp>

#include <stdexcept>

using namespace bohrium;
using namespace extmethod;
using namespace std;

namespace {

Q'body!@
} /% end of namespace x*/
@!footer!@

Listing 4.4: The header. tpl Bohrium uses for BrLas.

In this template we have @!bodye which tells pyratemp to insert the body . tp1,
which can be seen in Listing 4.5. The same is done with @!footerte. In Listing 4.5
we first load in the two matrices a and & from the instruction operands. The &
matrix is only allocated if actually present and used. This is where we use the
options from the JSON-file, which has given us the it_g boolean.

The lines with the switch statement have been omitted from the example,
but here we have a switch case statement, that includes the template for the
body_func.tpl file seen in Listing 4.6. There is a lot of conditionals in this
example, but if we look at the JSON-file from Listing 4.3, we see that only 1ayout,
notrans, and notranss are set for gemn. This means, that only those lines will be

generated, the rest will be omitted from the end result.
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struct @!uname!@Impl : public ExtmethodImpl {
public:
void execute (bh_instruction xinstr, wvoidx arg) {
// All matrices must be contigous

assert (instr—->is_contigous());

// A 1s m*k matrix

bh_views* A = &instr->operand[1l];

// We allocate the A data, if not already present
bh_data_malloc (A->base);

void *A_data = A->base->data;

<!-—(if if B)-—>

// B 1s k#*n matrix

bh_views* B = &instr->operand[2];

// We allocate the B data, if not already present
bh_data_malloc (B->base);

void *B_data = B->base->data;

<!-—(end) ——>
// switch
} /# end of execute method */

} /* end of struct =/

Listing 4.5: The body . tpl Bohrium uses for BLAs.

Listing 4.7 contains the result of running the above code generation, with
the JSON and template files already mentioned. It should look fairly similar to

Listing 4.1 because that is essentially what we aim to automatically generate.

4.2 Results

The results in this section all come from experiments run on an Intel® Core™
i7-3770 3.4 GHz processor with a NVIDIA GeForce® GTX 680 graphics card
for the OpenCL parts. The system was running Ubuntu Server 14.04 with Python
2.7 and NumPy 1.12.1. OpenBLAS 0.2.19 was used for the cBLAS interface
and lapacke 3.5.0 for the rapack interface. Both NumPy and Bohrium were
linked against these same packages. All the numbers come from an average of ten

consecutive runs.

4.2.1 General Matrix Multiplication

We have already seen how the gemn from Bras works and how I have automatically

generated wrapper methods for Bohrium to use.
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case @!utype!@: {

@'alpha!@

@'!betal@

cblas_Q@!'t!@Q@!'name!@ (
<!-—(if if_ layout)--> CblasRowMajor, <!—--(end)-—>
<!-——(if if side)——> CblasLeft, <!--(end)-—->
<!-—(if if_uplo)--—> CblasUpper, <!-—(end)-——>
<!-—(if if notransA)--> CblasNoTrans, <!--(end)-->
<!-—(if if transA) > CblasTrans, <!-—(end) ——>
<!-—(if if notransB)--> CblasNoTrans, <!--(end)-—>
<!-—(if if_ transB)--> CblasTrans, <!--(end)-——>
<!-—(if if diag)--—> CblasUnit, <!-—(end)-——>
<!-—(if if m)--—> m, <!-—(end)——>
<!-—(if if _n)--—> n, <!-—(end)-——>
<!——(if if k)--> kK, <!--(end)-->
@'alpha_arg!Q@,
(@'blas_type!@~) (((Q'type!@*) A_data) + A->start),
k,
<!-—(if if B)--—>
(@'blas_type!@~) (((Q'type!@*) B_data) + B->start),
n<!—-——(if if C)-—>,<!-—(end) ——>
<!-—(end) ——>
<!-—(if if C)-——>
@'beta_arg!Q@,
(@'blas_type!@~) (((Q'type!@*) C_data) + C->start),
n
<!--(end)-——>

)i

break;

}

Listing 4.6: The body_func.tpl Bohrium uses for BLas.

Here we will multiply two large matrices. In this example we let A be a matrix
of size 2000 x 3000 and B have size 3000 x 4000. The result matrix C = AB will
thus have size 2000 x 4000. All of this is done in 32-bit floating point numbers
and both A and B will be filled with random numbers. Thus, A will be 24MB, B
will be 48MB and the result matrix C will consist of 32MB of random numbers.

For the NumPy version, we use the matmu1 method to compute the matrix
multiplication. The same code is used for Bohrium, with the import switched to
Bohrium’s. We will have both a version with the old setup as well as one with the
new extension methods enabled. For the OpenCL version of Bohrium we just use
a different stack, namely the OpenCL one and Bohrium will automatically link
against the new OpenCL extension method instead. All the results can be seen in
Figure 4.1.

It should come as no surprise that the NumPy and OpenBLAS version perform
the same since internally NumPy is just calling on OpenBLAS to compute the

multiplication. Also, the first Bohrium is without this new extension method, so it
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cblas_sgemm (
CblasRowMajor,
CblasNoTrans,
CblasNoTrans,
m,
n,
k,

5O

’
bh_float32+) (((bh_float32+) A_data) + A->start),

o~

h_float32+) (((bh_float32+) B_data) + B->start),

.0,
bh_float32+) (((bh_float32+) C_data) + C->start),

5 ~0O03 ~ R~ ~

Listing 4.7: The automatically generated cBLAS code for Bohrium’s extension method.

should perform much worse as already described. The second Bohrium column is
with the extension enabled, so this too should perform just as well as NumPy and
OpenBLAS.

The c1BLAS version should be much faster, as we are computing the matrix
multiplication on a graphics card now. The Bohrium version with OpenCL is
worse because we are naively doing the same computations, which does not yield
good results on the GPU. The last column has Bohrium with OpenCL and the
c1BLAS extension method linked. This is running the same code as the NumPy
version, but Bohrium now knows to run it on the GPU with c1BLAS linked thus
it is running at a much faster speed.

All in all, we get a speed-up of a factor of about 4x without changing the
original code.

4.2.2 1AaPAcKk Solver

Since not all science is multiplying matrices, I will also show, that the Bohrium
extension methods work for other libraries. Let us take a look at the gesv solver
from rapack. This solver solves the equation Ax = B for x, where A and B are
matrices and x is a vector. The results shown in Figure 4.2 solves a system of 5000
random equations that are assumed to be linearly independent.

With NumPy we can use numpy.linalg.solve(...) from the 1inalg package
included in NumPy. The raprack version is hand-coded in C and the Bohrium

extension method just uses the same techniques as already described to incorporate
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Figure 4.1: General matrix multiplication (C = AB) for multiple implementations.

102.41

2
251 e 0o LAPACK
00 NumPy
L5s 10 Bohrium
Ll oss 0.95 B Bohrium w/Ext

0.5s

0s
Figure 4.2: System of equations solver (Ax = B) for multiple implementations.

LAPACK into extension methods. Bohrium again is as fast as Lapack when these
are enabled. It seems that NumPy is doing some pre-computations that slow it
down a bit.

When using Bohrium for array-programming we can thus use the same
NumPy code, but gain performance without losing the programmer productivity

aspects.
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BoHRIUM.RB: THE RuBYy

FroNT END

uBy has always lagged behind in scientific circles. I believe this to be a shame
R since Ruby is often cited as being a fun language to program in. This,
together with programmer productivity, should help unfamiliar programmers
program more advanced simulations. Other than NumPy, Ruby has a lot of the
same capabilities as Python, which has seen a great boost in scientific areas in the
last couple of years [28].

Ruby does have scientific packages, however, they are not as feature complete
and as fast as NumPy is for Python. More time should be invested in this branch
of programming in the Ruby community if we want Ruby to be used in broader
circles.

In the Ruby standard library (STL) there is a matrix class with the most basic
matrix operations, such as matrix products, determinants, and LU decomposition
to name a few. There is also a Ruby gem' called Numo/Narray that tries to
emulate NumPy for Ruby. This seems to be the most current and still maintained

gem.

LA self-contained Ruby library.

50
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In this chapter, I will present my own gem for handling tensors as well as
comparing its performance to the STL and Numo/Narray. For this, I have im-
plemented a front end for Bohrium in Ruby, so that we can have Ruby generate
JIT-compiled OpenMP and OpenCL kernels, and thus run them faster than STL
and Numo/Narray. This is all done by implementing a Ruby bridge using C++
that then uses the Bohrium C++ bridge as seen back in Figure 2.1 on page 24.

5.1 Bohrium.rb

The Ruby front end is called bohrium, so is the framework and the Python
package. In order to distinguish these, I will call the Ruby gem Bohrium.rb in the

following sections.

The Python package for Bohrium overwrites already established NumPy
classes, namely the array class. For Bohrium.rb instead I have chosen to create a
new array class, named snarray, which works similar to NumPy’s arrays. This is
done because the original array class in Ruby does not have the same interface and
behaviour as the NumPy ones do. For example, as we will see later, you cannot
directly add two arrays elementwise, as you would expect to be able to do with
matrices and vectors in other maths settings. In the future, I might choose to

»]

“monkey patch” the actual array or matrix class from the STL, so that a transition
from STL to Bohrium.rb will be more seamless.

Of course, you lose some of the ease-of-use that I have already written about
with regards to Bohrium and its NumPy version, but for now, the Bohrium array
lives in the eharray class in the Ruby gem.

In order to use Bohrium from Ruby we simply use the Ruby require statement:

require "bohrium".

5.2 Compiling and Executing

For now, Bohrium.rb only lives on the ruby-frontend branch? of the original
Bohrium project3 . When you compile Bohrium, you have to add - rusv_sr1pce-on
in order for CMake to enable the Ruby Bridge and thus the Ruby front end. This

IThe common term used in the Ruby community about opening a class and adding new features
to 1t.

thtps ://github.com/omegahm/bohrium/tree/ruby-frontend

3https ://github.com/bhl107/bohrium
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setting is off by default, so as to not compile more than necessary for people who
do not need Ruby.

When executing Bohrium and Ruby together we first run the Ruby code.
As Ruby is an interpreted language this is done line by line. If we encounter
Bohrium.rb operations we save these for later executing within the Bohrium
runtime to be lazily evaluated when needed. We collect as many operations as
we can until we get a side effect that uses the result. When this happens, we let
the Bohrium runtime do all the computations needed which are then passed back
the result we need. These operations might be split into several kernels within
Bohrium, but that is of no concern to the user. When the result is given back,
it can be utilised as a regular Ruby array. Figure 5.1 gives an overview of this

pipeline as well.

r

1

BhArray Operations BA[;lpt.?nd tloR
~ J ohrium

[ Start executing ] T
\ )
Ruby code

c being executed

Side effect Execute

N

that uses result Bohrium IR

Figure 5.1: How Bohrium works with Ruby.

In all the examples in this section, we print the result of the array operations.
This in itself is a side effect, which will then trigger Bohrium to execute said

operations.

5.3 Initialising a snarray

The constructor method for enarray takes an STL array as an argument and
will convert it into a proper Bohrium array. The argument array is copied into
Bohrium memory, element by element, and can be used as a Bohrium array
afterwards. An example of the constructor method, which is invoked with new,

can be seen in Listing 5.1.
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ruby_ary = [1, 2, 3]
bh_ary = BhArray.new(ruby_ary)
=> 2, 3]

’
5 > 7
2 ]
r <y 2l

puts ruby_ary # [1
puts bh_ary # => [1

Listing 5.1: Initialise harray with Ruby STL array.

It should be noted, that the bottom print out of the vn_ary here actually converts
the data and exposes a string representation of its internals when using the print
method puts from Ruby. Thus, this is not just the same array, but rather a similar
representation of the internals of it. Bohrium.rb does not retain a reference to the
original array object, which means that if you later change the original array, the
enarray Will not have the same changes applied and vice versa.

Instead of supplying Bohrium.rb with an already instantiated array, which we
then have to loop through to copy, we can have Bohrium.rb create the array itself.
This will, of course, be faster for large tensors and should therefore always be used,
unless you have a static array that you need to feed into the system. In Listing 5.2
we see three different ways of creating a snarray. The first fills the array with ones,

the second creates a matrix of zeros and the last creates a sequence from 0 to 9.

# Create 5x1 array of ones
aryl = BhArray.ones(5, 1)
puts aryl # => [1, 1, 1, 1, 1]

# Create 3x2 array (matrix) of zeros
ary2 = BhArray.zeros (3, 2)
puts ary2 # => [[0, 0], [0, 0], [0, 0]]

# Create a range of lengtk
ary3 = BhArray.arange (10) ]
puts ary3 # => [0, 1, 2, 3, 4, 5, 6, 7, 8,

be BhArray.seq (10
g

Listing 5.2: Initialising Bharray using various class methods.
Bohrium.rb uses arange here in the same way that NumPy does, however, the
method is also aliased as seq, which seems to be a more sensible name.
5.4 USlng BhArray

All the common maths operations that are available in Bohrium is also present in

Bohrium.rb. We can thus add two snarrays elementwise, subtract them, multiply,
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or other such operations. We can also take the cosine of every element, bitwise
and them, or similar. None of these is directly available in the Ruby STL.

Since Bohrium can overwrite the argument array, I have added so-called bang
methods' for the common maths operations. The maths operations are also aliased
to their appropriate symbols where available. We can thus look at Listing 5.3 and
see both +, adq, and add! in action. As seen in this Listing, this cannot be done in

the Ruby STL, where we instead will concatenate the arrays.

bh_aryl BhArray.ones (5, 1)
bh_ary2 = BhArray.ones (5, 1)

result_ary = bh_aryl.add(bh_ary2)
puts result_ary # => [2, 2, 2, 2, 2]

result_ary = bh_aryl + bh_ary2
puts result_ary # => [2, 2, 2, 2, 2]

bh_aryl.add! (bh_ary2)
puts bh_aryl # => [2, 2, 2, 2, 2]

# This cannot be done in Ruby STL
rb_aryl = [1, 1, 1, 1, 1]

rb_ary2 = [1, 1, 1, 1, 1]

rb_ary3 = rb_aryl + rb_ary2

puts rb_ary3 # => 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Listing 5.3: Adding Bharrays.

Other than regular maths operations, Bohrium.rb also supports reduction

methods, such as add_reduce, which we will use for the performance results.

5.5 Views into Arrays

One of the common tasks in array-programming involves looking at views or
windows of a tensor. This usually means, that you would like a section of the entire
tensor, that you can then work with and “put back”. We thus want a reference to
a piece of memory, without having to pull out the entire array.

In Bohrium.rb this is done simply by indexing into the sharray. You can use a
single index, to return a single element of a one-dimensional tensor, or ranges to
get multiple values, as seen in Listing 5.4.

Here we also see the essential method resnape that take an already initialised

enarray and modifies it to a different shape. Since all arrays are stored in one-

LCalled so because of the exclamation mark, or the bang.
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bh_ary = BhArray.seq(10)
puts bh_ary[4] # => [4]

bh_ary = BhArray.seq(25) .reshape([5, 5])

puts bh_ary # => [[ O, 1, 2, 3, 4],
# [ 5, 6, 7, 8, 91,
# (10, 11, 12, 13, 14],
# [15, 16, 17, 18, 19],
# (2o, 21, 22, 23, 24]]

puts bh_ary[0..1, 0..1] # => []

S Ne)
~

Listing 5.4: Indexing with a single index.

dimensional memory, this is only for the programmers to be able to reason about
the tensors in a regular way. You can add as many dimensions as you would like
with reshape. Here we will only concern ourselves with one- and two-dimensional
arrays, that is vectors and matrices. In the view part, we index with two ranges,
the first one specifying the first dimension and the second the second dimension.
In a standard matrix, the first dimension is the rows and the second is the columns.

If we want, for example, all of the elements in one dimension but only some in
the second, we can use true instead of a range or integer. This instructs Bohrium.rb
to create a view with all the elements.

We can also use views to set the array data as seen in Listing 5.5. The first
example sets a 2 x 2 view to the constant value 2. The second example also sets a
2 x 2 view, but this time we use another enarray object to set it. This second array

needs to be the same size and shape as the view or else you would get a runtime

error.
bh_aryl = BhArray.seq(9) .reshape([3, 31) # => [[0, 1, 2],
# [3, 4, 51,
# [6, 7, 8]]
bh_aryl[0..1, 0..1] = 2
puts bh_aryl # => [[2, 2, 2],
# [z, 2, 51,
# (6, 7, 811]
bh_ary2 = BhArray.seq(9) .reshape ([3, 31)
bh_ary2[0..1, 0..1] = BhArray.new([0, -1, -3, —4]).reshape([2, 2])
puts bh_ary2 # => [[ 0, -1, 2],
# [-3, -4, 5],
# [ 6, 7, 8]]

Listing 5.5: Setting a view.
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5.6 Performance Results

In this section, we will be performing two performance benchmarks. These bench-
marks are run on a MacBook Pro with a 3.1 GHz Intel® Core™ i7 processor and
16 GB 1867 MHz DDR3 RAM. The benchmarks are an average of 10 consecutive

runs and are all run with the default settings for both Bohrium and Numo/Narray.

5.6.1 Add

In this first benchmark, we will simply add a large set of numbers. This is done by
creating two vectors and elementwise adding them, as we saw back in Listing 5.3
on page 54.

In Ruby, we usually have many ways of doing a simple operation. Adding
numbers is no different. I asked the local Copenhagen user group for Ruby
“Copenhagen Ruby Brigade” what their preferred way of adding numbers in
arrays was. They came up with Listing 5.6, which uses the zip method in Ruby to

join two arrays elementwise and then the reduce method to sum the sub-arrays.

aryl = [2] = n # Create an array of len
ary2 = [3] * n # Create an array of le
aryl.zip(ary2).map { |i| i.reduce(&:+)

Listing 5.6: Adding with the Ruby STL (zip).

When using the Ruby STL matrix class, we will define a matrix with only
one row. The same is true for both Numo/Narray and Bohrium.rb. Listing 5.7,
Listing 5.8, Listing 5.9, and Listing 5.10 shows the solution using matrices in the
three different libraries. I show two different ways of doing it with Bohrium.rb,
the last one being the more reasonable because we generate the arrays in Bohrium

nnennory.

require "matrix"

ml = Matrix[[[2] * n]]
m2 = Matrix[[[3] * n]]
ml + m2

Listing 5.7: Adding with STL matrix.

Figure 5.2 shows the speed-ups compared to the original zip solution from
Ruby. For the very small cases of having n = 10! or n = 10? (not shown here),



5.6. PERFORMANCE RESULTS 57

require "numo/narray"

ml = Numo::Int64d.new(n, 1).fill(2)
m2 = Numo::Int64.new(n, 1).£fi11(3)
ml + m2

Listing 5.8: Adding with Numo/Narray.

require "bohrium"
aryl = [2] % n

ary2 = [3] * n

a = BhArray.new(aryl)
b = BhArray.new(ary2)
a + b

Listing 5.9: Adding with Bohrium.rb (init).

require "bohrium"

a = BhArray.ones(l, n, 2)
b = BhArray.ones(l, n, 3)
a +b

Listing 5.10: Adding with Bohrium.rb (ones).

both Numo/Narray and Bohrium.rb are slower than the Ruby STL. This is because
of the inherent overhead that both libraries have when moving data into their
own data structures. For the largest case, n = 108, we see that Numo/Narray is

2.2x faster than zip, while Bohrium.rb is 2.8x faster.

5.6.2 Sum

The other benchmark involves summing along an axis instead of just summing
two arrays. This is thus summing along multiple columns (vertical arrays) instead.
In this benchmark, I have fixed the number of columns to 1000 and then have
n be the number of rows again, increasing it as the experiment goes on. The
numbers in the matrix we are creating will be consecutive starting from 0. This
benchmark thus tests both the creation of sequential numbers as well as the ability
to sum memory, that lives in row-major order.

Listing 5.11, Listing 5.12, and Listing 5.13 shows the various implementation
of this benchmark. The Ruby version is again a result of asking the Copenhagen
Ruby Brigade how they would do it.
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Figure 5.2: ApD benchmark results.

The Numo/Narray and Bohrium.rb solutions are almost identical, as they both
agree on how matrices should be created and summed. In Bohrium.rb we have a

method called add_reduce that sums over the axis given, here 0, as this is the first.

i=-1
ary = Array.new(r) { Array.new(c) { i += 1 } }
result = Array.new(c) { 0 }
c.times do |col_idx|
r.times do |row_idx|
result[col_idx] += ary[row_idx] [col_idx]
end
end

Listing 5.11: sum benchmark — Ruby STL.

require "numo/narray"
result = Numo::Int32.new(r * c).seq.reshape(r, c).sum(axis: 0)

Listing 5.12: sum benchmark — Numo/Narray.

The results from Figure 5.3 show that Bohrium.rb is approximately 43 times
faster than the Ruby STL for n = 10°. The reason we see a decrease in speed-up
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require "bohrium"
result = BhArray.seq(r * c).reshape([r, c]).add_reduce(0)

Listing 5.13: sum benchmark — Bohrium.rb.

at n = 10° could be the fact that working with 10° x 1000 32-bit integers takes
up more than the 16 GB of memory available on the machine.

- o Ruby STL
0o Numo/Narray

80x 0 Bohrium
a. 60x
7
-5
s o
S 40x

20x%

ox L Hm (‘ - :DH

102 103 104 10° 10°
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Figure 5.3: sum benchmark results.

So again, we see that where Numo/Narray only outperform the Ruby STL
by a factor of 7x, Bohrium.rb is actually 15.5x faster, double the speed. For the
second largest matrix summed we see the aforementioned 43.4x from Bohrium.rb,

but only 16.6x from Numo/Narray.



CHAPTER

BROADCASTING

B ROADCASTING is the act of emitting a message from one place and then poten-
tially receiving it in several other places. In this chapter, we will discuss what
this means and whether these processes may choose not to receive the message if
they deem it unimportant.

When rejecting messages, we can think of it as physical broadcasting. Think
of a man standing in a town square. He is yelling his opinions for all to hear. Most
people will ignore him and only some will listen to what he is saying and use the
message.

As a technical term “broadcast” is also used in radio and television to mean
something that may or may not be received by other devices. The radio or TV
show is there to be received if you so choose.

In computers, we tend to say that broadcast means communicate with everybody
else. If I am to broadcast something, I would like everybody else to at least hear
the message.

In the next sections, I will give some examples of models that use broadcast in

different ways as well as theory and verification that uses broadcast with different
models in CSP.

60
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6.1 Models

Broadcasting can mean a lot of things. As already stated, we have a difference
already between physical and technical broadcasts. We can have several different
models of broadcast sources. Some of these are listed here, where 2 and s denote

broadcast sources:

6.1.1 Simple broadcast

This is what we mean when we talk about the physical broadcast. A simple
broadcast is one participant broadcasting and many who are able to listen with no
delivery guarantees. A broadcast that is received by no one is still considered a

valid and correct broadcast.

6.1.2 Reliable broadcast

A reliable broadcast must be received by all recipients to be correct. We do not
guarantee ordering that is, if several participants are broadcasting at the same time,

we do not care if messages from = arrive before or after messages from =.

6.1.3 Atomic broadcast

When we want to guarantee ordering we use atomic broadcasts. Two participants
can still both be broadcasting at the same time, but all processes must either receive
as a then & or B then a. This will be hard to do in hardware without some form of
lock or barrier. In our CSP algebra, we will see this emulated with a broadcast
controller, that will not accept new messages before everybody has received the

old one.

6.1.4 Causal broadcast

The causal broadcast [29] ensures that if the broadcaster of message = has received

message a, then no other participants can receive message s before a.

6.1.5 Synchronous and asynchronous broadcasts

Apart from ordering, we might want all the messages to arrive at the same time,
that is synchronous. A synchronous broadcast is rarely used in distributed systems,

as this would, in fact, be a one-to-all message. An asynchronous broadcast seems
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more intuitive. I have tried to illustrate these two types of broadcasts within a

network in Figure 6.1.

(a) A synchronous broadcast network. (b) An asynchronous broadcast network.

Figure 6.1: The two types of broadcasts.

6.2 Broadcasting in CSP

In Hoare’s CSP [18] only two processes can communicate at a time. If we disregard

this, we can very simply model broadcast over n processes in CSP as follows.

S=mlx—> S’

b=m?x—> P
n—1

sl ( l B)
=0

In this and the following algebraic equations, primed processes are processes
that go on to live on afterwards, without us specifying exactly what they do. They
may become the v process or they may become something else.

If we want to model broadcasting as described with CSP terms, we must do
so with a two-phase commit. We can create a network of processes, with one

sender, one controller and # receivers.

The CSP algebra needed for this to work is as follows



6.2. BROADCASTING IN CSP 63

S(x)=mlx — mue — S’
n-1 ,
C=mx—| ||| ¢ilx >V |;mucx = C
=0
D=c?x— P

n

-1
S("hello") || C]| ('IIOPi)
1=

A diagram of the communication can be seen in Figure 6.2.

Co
(5)—"—=(c)——(n)
> >
Cl’l

Figure 6.2: Broadcast in CSP.

Here the S process will start by sending a message, "hello", over the m
channel. The controller C will receive this, and immediately start interleaving
messages on all the ¢; channels. The P, processes will synchronise on these. Once all
D; have received the message, an ack will be sent back to the S process, signifying

the end of the communication and the two-phase commit.

This two-phase commit broadcast model can be verified to be deadlock-free
and behave as stated with FDR'. The first assertion verifies the model to be
deadlock-free while the second assertion, with the [\\, verifies that the trace of the
system, with the events m and mack hidden, is as stated. The CSP code necessary to
verify this for three P; processes is presented in Listing 6.1. Since we interleave the
communications FDR’s state diagram will contain all the permutations of ways to

communicate in order to verify that it is indeed deadlock-free. This, of course,

'In the published paper [30] we had an additional ¢, channel after the ¢; channels. This is
unnecessary and furthermore actually introduced an error in the later FDR verification.
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grows with 7, so the larger n the longer time FDR will have to use to verify the

systenl.

The processes in Listing 6.1 all go back to being themselves again. This will
still work, as with our primed processes, because remember, we said they could be
anything, even themselves. It should be obvious that this works with larger # as

well, the only downside is the state explosion as already discussed.

N =3
PNAMES = {0..N-1}
MSG = {"hello"}

channel mack
channel m:MSG
channel c:PNAMES.MSG

S(x) = m!x —-> mack —-> S(x)
C =m?x —> ( | 1i:PNAMES @ c.i!x —-> SKIP) ; mack —-> C
P(i) = c.i?x —-> P (1)

SYSTEM(x) = S(x) [|{|m, mack]|}|]
(C [I{lcl}il] i:PNAMES @[{[c.i|}] P (1))
assert SYSTEM("hello") :[deadlock free [F]]
assert SYSTEM("hello") \ {|m, mack]}
:[has trace [T]]: <c.0."hello", c.1l."hello", c.2."hello">

Listing 6.1: CSP algebra used to verify our broadcast semantic in FDR.

This semantics, of course, means that the broadcast controller, here C, must
know how many processes are receiving the message, thereby having their ¢;

channels in its alphabet.

Instead of having only S send a message we could want all processes to both
be able to send and receive a broadcasted message and thus avoiding the need for

an explicit sender. This can be done with the following algebra:

Pi(x) = (ei!x = Cinex = B ) O (ci2x > P

-1

C= _DO ci?x = | |l cjlx =V [5¢iack = C
=0

j#i

n—1
cn( || B("hello"))
0

i=
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A diagram illustrating this, with Py sending a message, can be seen in Figure 6.3.

Note that the arrow of Py points the other way, signalling that it is passing its

()

\/
/\

Figure 6.3: Broadcast in CSP without a sender.

message to C.

Each P, process is able to write to the controller at any time and can likewise
read from the controller, if there is a message ready, at any time. This will work
since each P, process is the only one allowed to write on ¢; before a broadcast
is initiated. Once a broadcast has begun, no other P; will be able to write on c;,

because only C was listening and willing to participate in the communication.

One could imagine that P/ and P/ would have the same read and write in-
corporated into their definitions. Of course, this now means that all P’s wants to
communicate at any time which might not always be the case. Special care should

be used when using the above two-phase commit for describing a network.

6.2.1 Broadcasting with Mailboxes

A different scenario for broadcasting, where the message is stored for later reading,
is mailboxes. Here the message is broadcast to a mailbox that stores the message.
A mailbox is dedicated to each process and can only be accessed by that process.
This is how message passing works in programming languages like Erlang [31]
and Elixir [32].

If we allow these mailboxes not to block, they are essentially endless buffers,
that the process can read from at any time it would like. When working with
mailboxes in CSP we can have the writer process be blocked until all mailboxes

have acknowledged that they have received the message with the following algebra:
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S(x)=blx > by — S’

n—1
B:b?x—>( ||| mj!x_)\/);bACK_)B,
i=0
M;(0) =m;2y — M;(y)
Mi(x s xs) = (m;?y — M; (x: x5 :9)) B (cilx — M; (xs)
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Figure 6.4 shows a diagram of the mailboxed communications within CSP.

() —— ()
 ———
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_

Figure 6.4: Broadcast in CSP with mailboxes.

Here : means concatenation and x : xs means the element x concatenated with
the list of elements xs, which in turn could be empty (0). Listing 6.2 shows that
this variant of mailboxed broadcasting can be verified to include a correct trace
and be deadlock-free with FDR. Again we let the primed processes be the original

process, which is equivalent with having them become whatever they want.

In Listing 6.2 we need a buffer size, here set to 5, to set an upper limit on
how many cases FDR will try to find counterexamples for. This buffer size can be
arbitrarily large and in a real-world scenario can be infinite. With a buffer size
of 5 FDR checks it almost instantly while adding 100 for the buffer size, it will

check more than 10 million states, which it completes in about a minute.
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N =3

MAXBUFFER = 5
PNAMES = {0..N-1}
MSG = {"hello"}

channel back
channel b:MSG
channel ¢, m:PNAMES.MSG

S(x) = b!x —> back —> S(x)
B = b?x -> (||| 1i:PNAMES @ m.i!x -> SKIP) ; back -> B
M(i, <>) = m.i?y -> M(i, <y>)
M(i, xss) = if #xss > MAXBUFFER then Ml (i, xss) else Ms (i, =xss)
M1 (i, <x>"xs) = c.i!x -> M(i, xs)
Ms (i, xss) = Ml (i, xss) [] (m.i?y —-> M(i, xss”"<y>))
P(i) = c.i?x —-> P (i)
MAILBOX = ||| i:PNAMES @ M(i, <>)
RECV = ||| 1:PNAMES @ P (i)
COMM (x) = S(x) [|{lb, backl|}|] B
SYSTEM (x) = (COMM(x) [|{|m|}|] MAILBOX) [|{|cl|}|] RECV
assert SYSTEM("hello") :[deadlock free [F]]
assert SYSTEM("hello") \ {|b, back, m|}
:[has trace [T]]: <c.l."hello", c.0."hello", c.2."hello">

Listing 6.2: Mailboxes verified with CSP and FDR.

6.3 Broadcasts in Other Libraries

Both JCSP [33] (Java Communicating Sequential Processes) and CHP [34] (Com-
municating Haskell Processes) has a kind of broadcast channel already. JCSP
implements a “one-to-many” channel type while in CHP multiple processes can
enrol to accept a message from the same sender.

Both of these kinds of broadcasts are blocking, and in fact not really a broadcast,
since the process needs prior knowledge about the other processes, that is, it needs
to know that at some point somebody might broadcast a message.

With the methods and algebra presented here, instead, we treat broadcasts as

ordinary channel communications.
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ONTINUING the trend of CSP libraries, I wanted to create one that allowed

me to model CSP algebra using the Ruby programming language. Several

attempts for creating such a library already exists, as well as an emulation of Go’s

channel and process model [35, 36], but this seems to be more of an emulation

of Go rather than CSP, and even though Go leans on CSP for its channel and

process model, it is not quite the same. Thus, I created my own and called it Emir.

Emit borrows ideas from the PyCSP implementation [3], which itself looked

at JCSP [37, 38, 39] and C++CSP [40]. PyCSP was developed at the University
of Copenhagen and University of Tromsg.

The two main components of any CSP framework is, of course, the processes
and channels. Emit has, like JCSP and PyCSP, channel objects that allow for
read and write channel-ends to be extracted and used for communication. The
programmer can get as many channel-ends as needed from a single channel object.
These channel-ends allow for any-to-any communication, where only one reader
and one writer are active in the rendezvous. Subjectively, it makes it easier to
reason about a CSP implementation, if we always know that a channel is only being
read from or written to in a given process. This makes it easier programming-wise,
however, the programmers are able to pass along entire channel objects instead of

channel-ends if the need arises.
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7.1 Implementation

As mentioned, Emit is written in pure Ruby. This means that all you need to run
Emit is a Ruby interpreter, which is present on most systems today [41]. It also
means that you will not have to compile external libraries or dependencies in order
for Emit to function on your system since Emit does not make use of any external
form of locks or barrier libraries.

Since Ruby is a highly dynamic programming language, there are several

ways of setting up the processes, which can be seen in Listing 7.1.

# Import the Emit framework
require "emit"

# Setup a process with a block. argl is passed to the block.

pl Emit::Process.new(argl) { |argl| ... }

# Give the 'new' method a proc. argl is passed to the proc.
p2_proc = proc { |argl| ... }

p2 = Emit::Process.new(argl, &p2_proc)

# Use a lambda and a shortcut for the 'new' method.

# argl is passed to the lambda
p3 = Emit.process(argl, ->(argl) { ... })

# Use a regular Ruby method. argl is passed to the method.
def p4_method(argl)

end
p4 = Emit.process(argl, &method(:p4_method))

# Use a regular Ruby method defined in the same namespace as Emit.
# argl is passed to the method.
def p5_method(argl)

p5 = Emit.p5_method (argl)

Listing 7.1: Various ways of setting up processes in Emit.

We also see the various ways that syntactic sugar can be used to create processes.
Normally the programmer would have to write out emit::process.neu(...) every
time they wanted to create a new process, but the shortcuts make it possible to
just Write Emit.process(...) OF €VeN Emit.my_own_method (. ..) wWhich makes Emit
almost invisible and unobtrusive. One of the main goals of Emit is to make it easy
to write CSP networks and pass messages between processes. Using Emit, the
programmer should never have to think about locks, network exceptions, and so

on.
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Channels are likewise very easy to work with. You just tell Emit you want
a channel and then grab the channel-ends with unary plus or minus. This can
be seen in Listing 7.2. These are again just syntactic sugar to make Emit as low

profile as possible.

require "emit"

# Create a new channel object

chan = Emit.channel

# output (writ

cout = -chan # or
# input (reader)
cin = +chan # or

Listing 7.2: Channel-ends in Emit.

7.1.1 Processes

The processes in Emit are, as already shown, created from simple Ruby procs,
lambdas, or globally defined methods. Inside Emit the processes are emulated
using fibers [42]. The instances of the process class in Emit will have all the
necessary information in order to run a process. When the programmer creates
a new process, it is spawned but not yet run, and thus does not have a fiber yet.
When using the paraiie1r module method of Emit all the processes mentioned will
get a fiber attached and then start to run, once the scheduler picks them up and
transfers control to their fiber.

Since everything in Ruby is an object this essentially means that you can have
a process in a variable that is then sent over channel communication to other
processes and then started a separate place from where it was created thus giving
us mobile processes and channels for free. As of the writing of this thesis, there
is, however, no way of starting the newly spawned mobile process in the same

scheduler.

7.1.2 Scheduler

In order for the processes to run we need a scheduler. The Ruby fibers work by
having the main thread transferring control to the next fiber that is then activated.

The newly activated fiber can yield the control to yet another fiber, or back to
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the scheduler, and thus all the processes can run. The scheduler is at all time

maintaining a list of processes (fibers) that are still queued to run.

We are not running fibers in parallel, but internally sequentially, thus we avoid
all the regular problems that arise in parallel programs. This unfortunately also
means that we cannot make use of multiple cores in a machine. Some concurrent
problems still remain. One such problem is deadlocks, as shown in Figure 7.1.
The following algebra specifies a communication that will always deadlock, as

both processes are waiting to send on different channels at the same time.

~
4@

Figure 7.1: A deadlocked network.

P(x)=clx -> d?x — P(x)
Qx)=d!x — c?x — Q(x)
P(1) [ Q(1)

{c, d}

Here both P and Q are ready to input on channel c and d respectively. This will
never work, and thus will deadlock if programmed in Emit. The Emit scheduler
is clever enough to see these kinds of patterns and throws a peadiockexception that

you can catch in your program if you would like to.

This particular deadlock is detected by the scheduler since the first process
engages in communication and is placed in a write queue then its fiber gives
control back to the scheduler. The scheduler then transfers control to the second
process that also places itself into a write queue. The scheduler now gets control
again, but cannot transfer control to any other process, since all processes are in

write queues waiting for readers. Thus we throw a peadlockexception.

Listing 7.3 shows the deadlocked network implemented with Emit.
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require "emit"

def deadlock_process (cout, cin)
cout << 1
cin. ()

end

c = Emit.channel
d = Emit.channel

Emit.parallel(
Emit.deadlock_process(-c, +d),
Emit.deadlock_process (-d, +c)

)

# => DeadlockException

Listing 7.3: Deadlocked network in Emit.

7.2 Communication

We have already discussed some of Emit’s communication scheme. Channels are
just Ruby objects from which you can extract as many read and write ends as you
need. All channels are therefore any-to-any channels. A normal way of using the
channel ends is to give them as arguments when instantiating the processes before

running them with parallel.

When a process wants to communicate, either read or write, on a channel it
puts itself into the appropriate read or write queue on that channel. If the opposite
queue is empty, the process will give the control back to the scheduler. Hopefully,
the scheduler will return control at some point in the future, if not, we have a
deadlock. When another process comes along that also wants to communicate on
the same channel, that is read what the first process wanted to write, the writer will
be activated and allowed to write the message to the current process. Afterwards,
the writing process is placed back into the scheduler’s main queue and activated
at some point in the future. If the reading process arrives at the rendezvous first,
it will also suspend itself and wait for the writer, but here it will be allowed to
read and then continue, again leaving the writer in the scheduler’s main queue.
The message will thus be moved from the writer to the reader on this rendezvous

channel communication.

If multiple readers or writers are present that is if, for example, two writers
arrive before a single reader, the writer is chosen at random. The same is true if

multiple readers have arrived before a single writer.
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7.2.1 Termination, Poison and Retirement

Since Emit, and also PyCSP, JCSP, and others, are built without the proper CSP
events, we need a way to signal, that the parallel construct is done. In the algebra,
we would normally just have all processes synchronise on v/, but in real life, we can
do an even simpler thing. We say that the network is terminated when all processes
are terminated. We also assume, that if the process itself does not explicitly loop,
then it terminates after it has performed its process body. That is, the processes in

Listing 7.4 is actually emulating the following algebra:

P=c!"Hello, world!"—V

Q=c?x—>V
P|Q
{c}
require "emit"
c = Emit.channel
Emit.parallel(
Emit.process(-c) { |cout| cout << "Hello, world!" 1},
Emit.process(+c) { |cin| puts cin. () }
)
# => Hello, world!

Listing 7.4: A simple Emit network that terminates.

Notice the v's in the algebra and the lack of a terminating term in the actual

implementation.

This, however, will not do for recursive processes. Imagine having a worker
process that keeps listening on a channel for more work. How is it to know that
no more work will come. To solve this problem, we introduce poison into the
network. Poison was first introduced in C++CSP [40] and JCSP [43]. Poison
works by disallowing further communication on a channel. This is done, by
having all future reads and writes on a channel throw an exception that can be
caught and treated in the process. This behaviour can be emulated with CSP as

follows:
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P(0) = poison — v
P(x)=c!"hello" — P(x—1)

Q=(c?x — Q) O (poison — V')
P(10) [ Q

{c, poison}

Here we output the string "hel1o" ten times on the channel before engaging
in the poison event. When we engage in poison the Q process can also only engage
in that, so the network synchronises on v and terminates.

In Emit we go a step further. Instead of the programmer having to handle the
poison exception, we just propagate the poison down all the channel-ends given as
arguments to the current process. However, if the programmer would like, they
can still catch the exception and handle it differently. Listing 7.5 shows a network,
with a looping process that keeps on reading from a channel and another process

that sends only ten items before poisoning it.

require "emit"

def source (cout)

10.times { |i| cout << i }
Emit.poison(cout) # or 'cout.posion'
end

def sink(cin)
loop { print cin. () }
end

c = Emit.channel
Emit.parallel (
Emit.source (+c)
)

Emit.sink (-c

# => 0123456789

Listing 7.5: Poisoning a channel in Emit.

While the poison construct is nice to have, it actually yields a new problem.
Because the channels are any-to-any, we can have several readers and writers at
any point. If a process is done and poisons this channels, all the other readers and
writers still using that channel will also die. Listing 7.6 shows this in Emit. Here

it might just be that the first process gets to write ten times in succession to the
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channel before anybody else. If it does, it will poison the channel and subsequent

writes will be poisoned without having given off their values.

Emit.parallel (
10.times.map { Emit.source(+c) },
10.times.map { Emit.sink(-c) }

)

Listing 7.6: Poisoning a channel that is still in use in Emit.

Instead of using poison, Emit also supports channel retirement as introduced
in PyCSP [4]. Channel retirement works the same way as poison, except instead
of poisoning, and thus ending all communication, immediately, we have a counter
for both types of channel-ends. When a process wants to terminate, it retires its
channel-ends and decrements the counters. If a counter is ever zero, that is no
more readers or writers are present on the channel, we can poison the channel
and terminate the last readers or writers that might still be present. This means
that instead of the first poison killing the channel, it is instead the last retirement,
for a channel-end type, that kills it. Retirement in Emit is used by switching out

poison for retire in Listing 7.5.

7.2.2 Choice

Another important aspect of any CSP library is the ability to emulate choice. If
we have several ready channels to read from, which channel do we then proceed
to actually read from? There exist many ways of determining this. One is to just
loop through all channels and take the first one available. This might be okay, but
could also pose a problem, if say the first channel is always ready to write, then
none of the other channels will get their turn.

Another way is to choose at random, but even random has its disadvantages.
With random, we have no guarantees that all channels are chosen at some point.
Here fairness comes into play. We can have a fair select [40] that always chooses
the one that has been chosen the least.

In Emit, I have chosen to implement the standard choice as a random select.
Emit looks at the list of choices it has, shuffles it, and runs through them from
the top down, choosing the first one that is available. Listing 7.7 has an example

process, £1ip_coin, that makes a choice, whether to read from cin1 or cinz. The _,
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in this case, is to signify that we are ignoring which channel was chosen, but only
care about the message passed on. This message is saved in the global result array
and lastly output at the end. This result array consists of a random mixture of ones

and zeros, as we read either a one or zero from the channels.

require "emit"
Sresult = []

def flip_coin(cinl, cin2, n)
n.times do
_, msg = Emit.choice(cinl, cin2)
Sresult << msg

end

end

chl, ch2 = Emit.channel, Emit.channel

n = 10

Emit.parallel (
Emit.process { n.times { -chl << 0 } 1},
Emit.process { n.times { -ch2 << 1 } 1},

Emit.flip_coin(+chl, +ch2, 2%n)
)

puts S$result.inspect

# = 1 0 7 0N ( 7 ( / 7 77
# > [1, 0O, 1, 0, 0, 1, 0, 0, 1, 1]

Listing 7.7: Choice between two different channels.

7.3 Results

7.3.1 COMMSTIME

An already well-established benchmark for CSP style libraries are the commsTiME
benchmark [44]. In commsTIME we have four processes, often called: prEFIX P,
DELTA D, succ S, and consume C. Figure 7.2 shows a diagram of the communi-
cations in the network. PREFIX is given an initial value of 0. All it does is read from
its input channel and write to its output channel, having first output the initial
value. DELTA copies the message in two and passes in to each of its output channels.

succ will increment the value by one and pass it on.
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Figure 7.2: The comMmMsTIME network.

These communications follow the algebra:

P(x)=(c!x > d?y > P(y)) 0V
D=(?x— flx—>elx—>D)0OV
S=(

=(e?x—>dl(x+1)—>S5)0V

C(0)=Vv
Cn)=f?x—>C(n-1)
P(0O)||D IS || C(500000)

Here I have added a v to terminate the network. One could also imagine
an alternative where the consuMe process did not count up or down, but just
consumed the value.

Listing 7.8 shows the FDR verification of commstiME. This is, of course,
deadlock-free as well as having a specific trace. In this example I have replaced the
counting with a modulo operation, so the number just flips between 0 and 1, as

FDR can then continue ad infinitum’.

7.3.2 Implementation

With commsTiME defined and verified, we can take a look at an implementation
in Emit and compare that to implementations in other CSP libraries. In the
appendix, starting on page 91, Listing 1, Listing 2, Listing 3, and Listing 4 all
contain a COMMSTIME implementation. In order we have Emit, Go, JCSP [45],
PyCSP [46]°.

1T have seen countless problems with FDR at compile time, when trying to get it to simply add
one to a number that is bounded.

2This code is modified from the JCSP repository.

3This code is modified from the PyCSP repository.
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channel ¢, d, e, £ : { 0..1 }
P(x) = clx —> d?y —> P(y)

D =2c¢?x > flx -> elx -=> D

S = e?x —> d! ((x+1)%2) -> S

Cc = f?x —> C

SYSTEM = (P(0) [{l ¢, d [} [| {] ¢, e, £ |}] D)
[({lc, d, e, £I} {le, d, £]}]
(s [{le, dlr I {I £ [}] C)

assert SYSTEM : [deadlock free [F]]
assert SKIP [F= SYSTEM \ Events

assert SYSTEM
: [has trace [T]]: <c.0, £.0, e.0, d.1, c.1, £.1, e.1>

Listing 7.8: CSP algebra used to verify commsTiME in FDR.

Table 7.1: commsTIME results averaged over 10 runs.

Framework | Result (ys/communication)
PyCSP 346.30
PyCSP (greenlets) 6.04
JCSP 22.55
Emit 3.79
Go 0.28

When using coMMSTIME as a benchmark, what we are looking for is the
number of microseconds (s) per communication. In it, we have 500,000 iterations
being run, where each of the four processes does one communication. Thus, we
have 2,000,000 communications in a run. Timing the entire benchmark and then
dividing by 2,000,000 gives us the sought after time per communication. Table 7.1
shows the various results of running the specific commsTime implementation. The
“PyCSP (greenlets)” benchmark is the same code as Listing 4 in the appendix,
but with from pycsp.greenlets import +, thus importing the greenlet version of
PyCSP. Obviously, in Table 7.1, Go wins using only a quarter of a microsecond
per communication. This might be because the channels and processes are built
into the language itself and the code is compiled, however, Emit follows close
by and is only a factor ten behind, which is quite impressive for an interpreted
language such as Ruby. Emit is also roughly twice as fast as PyCSP using greenlets
and 100 times faster than regular PyCSP.






CHAPTER

ONGOING & FUTURE W ORK

VEN after three years of work on the various parts of Bohrium and Emit there
E are some things that are still ongoing. There are also several features of both
frameworks that I would love to see in the future. These are all described in this

chapter.

8.1 Bohrium Filters

The “stupid maths” filter is great, it does what it says on the box, however, it is only
one of these such filters that could be made for Bohrium. Other, more resilient
and strong, filters could also be made, to contract even more maths into simpler
terms. There are a lot of pitfalls that programmers need to consider when creating
these filters.

For example, it would be nice to have a filter where multiply and divide negate

each other, however, this will not always work for integer types. For example,

ro oz
5755, whenreR, z€eZ, r=z

is not always true, since, if r = z = 3, but if  still need to be in Z, we would need
to round or floor the fraction. Bohrium filters that take this into account and still

produce faster kernels would be a nice addition.

80
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8.2 Automatic Extension Methods

At first, [ wanted to have a more programmatic approach to the templating schemes.
I wanted to create a DSL (Domain Specific Language) in order to express the
templates and then have the entire suite automatically generate itself. This is
feasible, but I do not know whether it would be a feature worth creating. Splitting
the templates into even smaller pieces might be nice for reusability, but I cannot
say that there were much in my experiments. More often then not small changes
to each piece of the template had to be made. In the DSL, this could be made by
having more and more arguments for each command, but soon you would have
much of the original code polluting the programmers’ use of the DSL, which was
not the point of creating the DSL, to begin with.

[ only tried to implement this with BLas, Lapack, and OpenCV, but additional
external libraries could be interesting to have in Bohrium as well.

8.3 Bohrium.rb

The C++ part of the Ruby front end can be optimised a lot. There are still
several pointers floating around and I believe that the Ruby garbage collector is
being ignored, instead of helping it along. Thus, figuring out how to mark the
Bohrium internals for garbage collection by the Ruby garbage collector is a must.
Unfortunately, there is not very much documentation on the C++ interface for

Ruby, which is one of the reasons why I have not invested more time in it myself.

As already discussed earlier, the Ruby front end gets its methods from a JSON-
file containing the Bohrium methods. This could possibly be done easier and
better with less sanitising used before actually generating the methods. It could
also be, that it would be beneficial to actually hand-implement these 79 methods
instead of automatically generating them thereby having much more control.

As also stated earlier, it would be nice, if we monkey patch, for example, the
Matrix class instead of creating our own eharray class to encapsulate the Bohrium
arrays. Having them in an STL matrix means that we can just plug our newly
optimised Bohrium matrix into the already established STL matrix, with little
overhead from the programmer. Thus, giving us the same benefit as with NumPy

and Python where the programmer can just rename “numpy” to “bohrium”.
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8.4 Emit

An implementation of the scheduler in Emit that is actually able to run the threads
in parallel would be very nice. This could be done by having the scheduler spin
up a new thread or OS process for each fiber. Doing so might, however, decrease
the performance, as the overhead of spawning new processes could get quite large.
Figuring out how to do this properly is the next step for Emit.

Proper nested parallel structures are also needed, for example, I would like to
have a CSP process be able to start new parallel processes with a new scheduler or
possibly even the same scheduler. For example, for the case of commsTIME, we
might like DELTA to be able to communicate with succ and consuME in parallel,
instead of now having them communicate one and then the other. This could be
implemented with a choice as well, but for the results back in Chapter 7 this does

not matter.






CHAPTER

CONCLUSION

HROUGHOUT the duration of my PhD studies, I have worked with many
different technologies, frameworks, libraries, programming languages, and
theories. With my work on both Bohrium and Emit I have shown, not only
that Ruby can be used for scientific purposes, but also that Bohrium and CSP in
themselves have a lot of potentials.

I have published ten scientific articles and have personally presented the work
at five different conferences. These articles were on different topics, some further
explained in this thesis, some not explained here. I have also presented several
posters at poster sessions that I have neither attached nor explained here, as their
topics are different than the topics of this thesis.

For Bohrium I have created filters that optimise the generated bytecode and
further optimises the generated kernels. These filters show that we can trans-
form the bytecode with already known compiler techniques thus increasing the
performance for each kernel.

Bohrium can now use BLas directly to multiply matrices thus allowing it to
speed up its execution when computing matrix products or similar functions taken
from the various BLAs libraries. This also works for the OpenCL generated kernels.
This is done by automatically generating wrapper functions from templates when

Bohrium is first compiled.
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I have also created a Ruby front end for Bohrium that outperforms the standard
library for Ruby by up to 43x, in a benchmark summing along columns in a large
matrix. These results are better than the current scientific package of choice for
Ruby, Numo/Narray, however, Numo/Narray has still many more features. The
Ruby front end makes it very easy to use Bohrium from Ruby in much the same
way as NumPy works for Python.

For CSP we defined broadcast and how broadcast could work in the algebra.
This, and a version that uses mailboxes to handle the messages, was verified with
FDR.

Emit is my own CSP framework that I built just to see if I could outperform
Python. It turned out that the implementation of the scheduler made it faster by a
factor of 2 for the most common benchmark commsTimME. This scheduler runs the
spawned processes concurrently and rendezvous on communications just like the
CSP algebra.

With both of these cases in hand, I would argue that Ruby still has a lot of
potential in the scientific community. Since both Bohrium.rb and Emit are so low
profile, I would likewise argue that utilising these gems would come at no cost to

the programmer productivity.
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require "emit"

def prefix(cin, cout, item)

loop do
cout << item
item = cin. ()
end
end

def delta2(cin, coutl, cout2)
loop do
t = cin. ()
coutl << t
cout2 << t
end
end

def successor(cin, cout)
loop { cout << cin. () + 1 }

end

def consumer (cin, n)

cin. ()

tl = Time.now
n.times { cin. () }
dt = Time.now - tl

tchan = dt.fdiv (4 * n)

puts "Total time elapsed = %.6fs" % dt
puts "Avg. time per communication = %
= %.6fps\n" % [tchan, tchan » 1_000_000]

Emit.poison (cin)
end

n =3
comms = 500_000
n.times do |1i|
begin
puts "-————————— run: #{i+1} / #{n} ———-————- "

a, b, ¢, d = Emit.channel, Emit.channel, Emit.channel, Emit.channel

Emit.parallel (
Emit.prefix (+c, -a, 0),
Emit.delta2(+a, -b, -d),
Emit.successor (+b, -c),
Emit.consumer (+d, comms)
)
rescue Emit::ChannelPoisonedException
Emit::Scheduler.reset!
end
end

Listing 1: coMMsTIME using Emit.




package commstime

func prefix(cin, cout chan int, v int) ({
cout <- v
for v := range cin ({
cout <- v

func id(cin, cout chan int) {
for v := range cin {
cout <- v

func delta(cin, coutl, cout2 chan int) {
for v := range cin {
coutl <- v
cout2 <- v

func succ(cin, cout chan int) {
for v := range cin {
cout <- v + 1

func consume (cin chan int, n int) {
for i := 0; 1 < n; 1i++ {
<-cin

package commstime
import "testing"

func BenchmarkCommstime (bench *testing.B) {
:= make (chan int)
:= make (chan int)
:= make (chan int)
:= make (chan int)

Q.0 O o

go prefix(c, a, 0)
go delta(a, b, d)
go succ (b, c)

consume (d, bench.N)

Listing 2: commsTiME implemented as a benchmark in Go.




import org.jcsp.lang.x;
import org.jcsp.plugNplay.ints.*;
import org.jcsp.demos.util.x;

public class CommsTime {
public static void main(String argv []) {
int nLoops = 500000;

System.out .println(nLoops + " loops ...\n");
One20neChannelInt a = Channel.oneZonelnt ();
One20neChannelInt b = Channel.oneZonelnt ();
One20neChannelInt ¢ = Channel.oneZonelnt ();
One20neChannelInt d = Channel.oneZonelnt ();

new Parallel (

new CSProcess|[] {
new PrefixInt (0, c.in(), a.out()),
new Delta2Int (a.in(), d.out (), b.out()),

new SuccessorInt (b.in(), c.out()),
new Consume (nLoops, d.in())
}

) .run () ;

import org.jcsp.lang.*;

class Consume implements CSProcess {
private int nLoops;
private ChannelInputInt in;

public Consume (int nLoops, ChannelInputInt in) {
this.nlLoops = nLoops;

this.in = inj;

}

public void run() {
int x = -1;

while (true) {
long t0 = System.currentTimeMillis () ;

for(int 1 = 0; i < nLoops; i++) {

x = in.read();
}
long microseconds = (System.currentTimeMillis () - t0) = 1000;
long timePerLoop_us = microseconds / ((long) (4+«nLoops));
System.out.println (" " + timePerLoop_us +

" microseconds / communication");

Listing 3: (Some of ) commsTiME implemented using JCSP.




# —%— coding: utf-8 —#-
from pycsp import =
import time

@process
def prefix(cin, cout, item):
while True:
cout (item)
item = cin ()

@process
def delta2(cin, coutl, cout2):
while True:
t = cin()
coutl (t)
cout2 (t)

@process
def successor(cin, cout):
while True:
cout (cin()+1)

@process

def consumer (cin, n):
cin ()
tl = time.time ()
for i in xrange(n):

cin ()
dt = time.time() - tl
tchan = dt / (4 * n)
print ("Total time elapsed = %.6fs" % dt)
print ("Avg. time per communication = %.6£fs" \
"= %.6fus\n" % (tchan, tchan % 1000000))
poison (cin)
N = 500000
for i in xrange(3):
print ("-—————————~ run %$d/3 ————————————— S (i+1)
a, b, ¢, d = [Channel (), Channel(), Channel(), Channel ()]

Parallel (
prefix (+c, -a, 0),
delta2 (+a, -b, -d),
successor (+b, -c),
consumer (+d, N)

Listing 4: commsTimE with PyCSP.
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Abstract—In this paper, we present the current status of the
Bohrium runtime system for automatic parallelization of array
programming languages and libraries. We demonstrate how the
design of Bohrium makes it possible to utilize different hardware
platforms — from simple multi-core systems to clusters and GPU
enabled systems — without any changes to the original user
program.

I. INTRODUCTION

In the scientific community, array programming[5] is a
popular programming paradigm[13], [11]. It provides a natural
way to express linear algebra problems without using pointer
arithmetic or other low-level language constructs. Thus, ar-
ray programming languages and libraries such as Matlab,
Python/NumPy, R, and Fortran are very popular.

Bohrium'[9], [10] defines a virtual machine, which executes
an instruction from a bytecode instruction set that operates
on arrays. This approach exploits the popularity of array
programming by translating array operations into bytecodes,
performing optimizations on the bytecodes, and then compil-
ing the bytecodes into architecture specific binary kernels, and
finally executing them.

In the rest of this paper, we will provide an overview and
status of the different component of Bohrium.

A. Target audience

Bohrium is not built for speed, however as we will see in
section VII it can be fast. Bohrium is rather meant to help
scientific personal easily parallelize their programs, without
having to know about special annotations such as pragma.
Thus Bohrium can help people write fast, parallelized code,
without rewriting their programs. To run with Python all the
user needs to do, is switch the import numpy for import
bohrium or even easier, launch their Python program with
a -m bohrium command flag, which will substitute NumPy
for Bohrium.

B. Interoperability

As already stated and as will be discussed in the following,
Bohrium works with multiple languages and libraries. The
main languages/libraries are NumPy, C++ and CIL?, however
it is possible to use Bohrium from any environment that can
call C libraries.

! Available at http://www.bh107.org.
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II. OVERVIEW

Bohrium provides the mechanics to seamlessly couple an
array-programming language or library with an architecture-
specific implementation. It lazily records array operations,
such as NumPy array operations, compiles them into
architecture-specific binaries, e.g. GPGPU kernels, and exe-
cutes them.

Bohrium consists of a number of components that operate
on hardware agnostic array bytecodes. Components can be
architecture-specific but they all use the same bytecode and
communication protocol and can be interchanged. This design
makes it possible to combine components in a setup that
matches a specific execution environment without changing
the user program.

The following component types are available for Bohrium:
Frontend At the highest level, we have the frontend program-

ming language and library. Bohrium is not biased towards
any specific choice of programming language or library
as long as it is compatible with the array-programming
model.



Bridge Connected to the frontend is a Bridge component. Its
job is to translate the frontend language into Bohrium
bytecode.

Bytecode Optimization Between the bridge and the execu-
tion backend, Bohrium supports a number of compo-
nents that make bytecode-to-bytecode transformations.
The specific component setup will vary depending on
which optimizations and fuse strategies one wants to
apply.

Bytecode Fusion After bytecode-to-bytecode transforma-
tions, Bohrium will fuse array bytecode into kernels
that satisfies specific criteria given by the backend.
A common criteria is data-parallelism, which makes
it possible to calculate all array element individually
without any communication between calculating threads.
Another common criteria is that the shape of the arrays
within a kernel must match.

Backend Given the kernels of array bytecode, the backend
will compile the array bytecode into binary kernels that
targets a specific architecture such as a multi-core CPU
or a GPU.

Figure 1 shows an example of a Bohrium runtime setup that
fits a system with both a CPU and a GPU. Notice that the GPU
is the primary backend but may pass some array bytecodes to
the CPU. The exact component setup depends on the runtime
system e.g. if the system has no GPU, we can simply connect
the fusion component directly to the CPU backend.

To make Bohrium as flexible a framework as possible, we
manage the setup of all the components at runtime through
a configuration file. The idea is that the user or system
administrator can specify the hardware setup of the system
through a configuration file. Thus, it is just a matter of editing
the configuration file when changing or moving to a new
hardware setup and there is no need to change the user’s
programs. For compiled languages, the same compiled binary
can be used with multiple configuration files.

III. FRONTEND

As a running example for each frontend we use an imple-
mentation that solves the heat equation iteratively using the
Jacobi Method.

A C++

The C++ bridge provides an interface to Bohrium as
a domain-specific embedded language (DSEL) providing a
declarative, high-level programming model. Related libraries
and DSELs include Armadillo[14], Blitz++[16], Eigen[1] and
Intel Array Building Blocks[12]. These libraries have sim-
ilar traits: declarative programming style through operator-
overloading, template metaprogramming, and lazy evaluation
for applying optimizations and late instantiation.

A key difference is that the C++ bridge applies lazy eval-
uation at runtime by delegating all operations on arrays to
the Bohrium runtime, whereas the other libraries apply lazy
evaluation at compile-time via expression-templates. This is
a general design-choice in Bohrium — evaluation is improved

by a shared component and not in every language bridge. A
positive side effect of avoiding expression-templates in the
C++ bridge are better compile-time error messages for the
user.

1clude <bh/b.
double solve (multi_array<double>
{

multiiarray<double‘> center,north, south, east,west, tmp;

grid, size_t epsilon)

center grid[_(1,-1,1)11[_(1, l 15
north = grid[_ (“ -2, )11 ( )]r
south = grid[_ 0,1)11[_ )1i
east = grid[_ ( 1, 1)1 (4, url)]r
west ~ grid[_(1,-1,1)10_(0,-2,1)1;

double delta = epsilon+l;

while (delta > epsilon) {
tmp = 0.2+ (center+northt+east+west+south);
delta = scalar (sum(abs (tmp-center)));
center (tmp) ;
}
}

Listing 1: Bohrium C++ implementation of the heat equation
solver. The grid is a two-dimensional Bohrium array and the
epsilon is a regular C/C++ scalar.

Listing 1 illustrates the heat equation solver implemented in
Bohrium/C++, a brief clarification of the semantics follows.
Arrays along with the type of their containing elements are
declared as multi_array<T>. The function _ (start,
end, skip) creates a slice of every skip element from
start to (but not including) end. The generated slice is then
passed to the overloaded operator[] to create a segmented
view of the operand. Overload of operator= creates aliases
to avoid copying. To explicitly copy an operand the user
must use a copy (. ..) function. Overload of operator ()
allows for updating an existing operand; as can been seen in
the loop-body.

B. CIL

The NumCIL library introduces the declarative array pro-
gramming model to the CIL languages [15] and, like ILNumer-
ics, provides an array class that supports full-array operations.
In order to utilize Bohrium, the CIL bridge extends NumCIL
with a new Bohrium backend.

The Bohrium extension to NumCIL, and NumCIL itself,
is written in C# but with consideration for other languages.
Example benchmarks are provided that shows how to use
NumCIL with other popular languages, such as F# and Iron-
Python. An additional IronPython module is provided which
allows a subset of NumPy programs to run unmodified in
IronPython with NumCIL. Due to the nature of the CIL, any
language that can use NumCIL can also seamlessly utilize the
Bohrium extension. The NumCIL library is designed to work
with an unmodified compiler and runtime environment and
supports Windows, Linux and Mac. It provides both operator
overloads and function-based ways to utilize the library.

Where the NumCIL library executes operations when re-
quested, the Bohrium extension uses both lazy evaluation and
lazy instantiation. When a side effect can be observed, such as



accessing a scalar value, any queued instructions are executed.
To avoid problems with garbage collection and memory limits
in CIL, access to data is kept outside CIL. This allows lazy
instantiation, and allows the Bohrium runtime to avoid costly
data transfers.

using NumCIL.Double;
using R = NumCIL.Range;

double Solve (NdArray grid, double epsilon)
{
var center
var north
var south

[R.Slice(1l,-1), R.Slice(l,-1)
[R.Slice(0,-2), R.Slice(l,-1)
grid[R.Slice (2, 0), R.Slice (1,1
[R R
[R R

17
17
17
17
17

)

var east grid[R.Slice(1,-1), .Slice (2, 0)
var west = grid[R.Slice(1,-1), .Slice(0,-2)
var delta = epsilon+l;
while (delta > epsilon) {

var tmp = 0.2x (center+northt+east+west+south);

delta = (tmp-center) .Abs().Sum();

center [R.All] = tmp;

}
}

Listing 2: NumCIL C# implementation of the heat equation
solver. The grid is a two-dimensional NumCIL array and
epsilon is a regular scalar value.

The usage of NumCIL with the C# language is shown in
listing 2. The NdArray class is a typed version of a general
multidimensional array, from which multiple views can be
extracted. In the example, the Range class is used to extract
views on a common base. The notation for views is influenced
by Python, in which slices can be expressed as a three-element
tuple of offset, length and stride. If the stride is omitted, as
in the example, it will have the default value of one. The
length will default to zero, which means “the rest”, but can
also be set to negative numbers which will be interpreted as
“the rest minus N elements”. The benefit of this notation is
that it becomes possible to express views in terms of relative
sizes, instead of hardcoding the sizes.

In the example, the one line update actually reads multiple
data elements from same memory region and writes it back.
The use of views simplifies concurrent access and removes all
problems related to handling boundary conditions and manual
pointer arithmetic. The special use of indexing on the target
variable is needed to update the contents of the variable,
instead of replacing the variable.

C. Python/NumPy

The implementation of the Python/NumPy bridge consists
primarily of a new bohrium-array that inherits from NumPy’s
numpy-array. The bohrium-array is implemented in C and uses
the Python-C interface to inherit from numpy-array. Thus, it
is possible to replace bohrium-array with numpy-array both in
C and in Python — a feature we need in order to support third
party projects such as matplotlib.

As is typical in object-oriented programming, the bohrium-
array exploits the functionality of numpy-array as much as
possible. The original numpy-array implementation handles

import numpy as np

def solve(grid, epsilon):

center = grid[l:-1,1:-1]
north = grid[-2:,1:-1]
south = grid[2:,1:-1]
east = grid[l:-1,:2]
west = grid[l:-1,2:]
delta = epsilon+l

while delta > epsilon:
tmp = 0.2+ (center+north+southteast+west)
delta np.sum(np.abs (tmp-center) )
center([:] = tmp

Listing 3: Python/NumPy implementation of the heat equation
solver.

metadata manipulation, such as slicing and transposing; only
the actual array calculations will be handled by Bohrium. The
bohrium-array overloads arithmetic operators, thus an operator
on bohrium-arrays will use Bohrium.

However, NumPy functions in general will not make use of
the Bohrium backend since many of them uses the C-interface
to access the array memory directly. In order to address this
problem, Bohrium has to re-implement some of the NumPy
APIL. The result is that the Bohrium implements all array
creation functions, matrix multiplication, random, FFT, and
all ufuncs for now. All other functions, which accesses array
memory directly, will simply get unrestricted access to the
memory.

In order to detect and handle direct memory access to arrays,
Bohrium uses two address spaces for each array memory: a
user address space visible to the user interface, and a backend
address space visible to the backend interface. Initially, the
user address space of a new array is memory protected with
mprotect such that subsequent accesses to the memory will
trigger a segmentation fault. In order to detect and handle
direct memory access, Bohrium can then handle this kernel
signal by transferring array memory from the backend address
space to the user address space.

Similarly to the other bridges, the Python/NumPy bridge
uses lazy evaluation where it records instruction until a side
effect can be observed.

IV. OPTIMIZATIONS ON BYTECODE LEVEL

The bytecode used by Bohrium is a descriptive array
bytecode. This can be used to record additional information
about the instructions at compile-time. One can optimize such
bytecodes in several ways, e.g. if multiple BH_ADDs are done
for the same view, we can combine these into one operation.
Doing so will decrease the number of steps for the fuser and
code-generator.

Due to the distributive property of multiplication we can
also do the following rewriting

ar +bx — (a+ b)x

Generalizing this, for some array = and scalar values c;, we
want to rewrite



Z(xcl) %x'Zci
K3 3
to give us the least amount of multiplication operations.
Multiplying and dividing with the identity element can be
removed from the bytecode program, and the views can be
replaced throughout the rest of it. The same is true for addition
and subtraction. That is, we can do the following rewrite

r*xe—>T

when * is an operator for which e is the identity.

Another interesting bytecode to look at is BH_POWER. If
the exponent of the power function is an integer, it is actually
faster to do a series of multiplications instead [6], that is

n

Another optimization can be applied to this. In practice we
do not want to generate a new temporary array in memory,
to hold the result, so we are only allowed to operate on two
arrays, the input and output arrays. We could just copy the
input array to the output array and then multiply the output
array with the input array n — 1 times, however there is a
better way. Instead we copy the input array to the output array,
and then multiply the output array with itself |log,(n) | times.
This will give us the closest array to the result, which we can
calculate with the least amount of multiplications. The rest can
be done by multiplying with the input array again.

Let input be the input array and output be the output array
and let us as an example calculate 0. Since [log,(10)| = 3,
we need to do three self multiplications of output.

output = input (x)
output = output - output (z?)
output = output - output (z*)
output = output - output €
output = output - input (%)
output = output - input (x19)

There are other faster ways to do this [4], however this
is the most generic scheme, that works for all n € N,. This
optimization helps us speed up various benchmarks, especially
Black Scholes, which we will discuss in section VII.

Other more complex patterns, that we will look for in
the future, could be solving linear systems without actually
creating the inverse matrix, e.g. solving

Az =0»

without figuring out A~!. This can be done with LU
factorization, but we would need to actually detect this pattern
in the bytecode, again easing the use of Bohrium, since the

user do not have to optimize their linear system solving
themselves.

V. ARRAY BYTECODE FUSION

Array operation fusion is a program transformation that
combines (fuses) multiple array operations into a kernel of
operations. When it is applicable, the technique can drastically
improve cache utilization through temporal data locality and
enables other program transformations, such as streaming and
array contraction [3].

Consider the two for-loops in listing 4a, which are fused
into one for-loop, listing 4c, with the result of much improved
cache utilization since array T and A are only traversed once
instead of two times. For the next level of improvement, the
for-loop in listing 4d does not allocate the array T at all.
Instead, it uses the scalar t to stream the intermediate result
of B[1]  A[i], which is possible because T is only used
within the for-loop — it is a temporary array local to the for-
loop.

Not all fusion of array operation are allowed. Consider the
two loops in listing 4b: the second loop traverses the result
from the first loop in reverse, we must compute the complete
result of the first loop before continuing to the second loop.
This prevents fusion of the two for-loops and streaming of T,
since it is not temporary to any one for-loop.

A. Fusibility

Array streaming depend on fusing array operations, so it is
necessary to determine which operations we can legally fuse,
and which we can profit from fusing. Generally, it is useful
to fuse two array operations when the result of each output
array element can be calculated independently without any
communication between threads or processors:

Definition 1 (Fusibility). Two array operations, f,g, are
fusible when there are no horizontal dependencies between:

o The output arrays of f and the input arrays of g
o The output arrays of g and the input arrays of f
o The output arrays of f and the output arrays of g

where two arrays have a horizontal dependency when they
access the same memory in different order.

Bohrium further restrict the fusibility of array operations
by requiring that the shape of the involved arrays is the same.
However, the number of dimensions in reduction operations is
allowed to differ.

B. Fusion of Array Operations

[8] describes methods for finding a partition of operations
such that a cost function is optimized, or near-optimized using
a fast approximation heuristic. In Bohrium, we apply these
methods to generate kernels that optimize for array streaming.

The problem of finding the optimal operation partitions
is called the Fusion of Array Operations Problem (FAO
problem), and is defined as follows:



double A[N], B[N], TI[N];

for (int i=0; i<N; ++1) {
T[i] = B[i] * A[i];

}

for (int i=0; i<N;
A[i] += T[i];

F+1) |

}

(a) Two forward iterating loops.

déullalle“ Z—\[‘N] , k é [N], TIN];

int j = N;

for (int i=0; 1i<N; ++i) {
T[1i] = B[i] = A[i];

}

for (int i=0; 1i<N; ++i) {
Ali] += T[--31;

}

(b) A forward and a reverse iterating loop.

for (int i=0; i<N; ++1i) {
T[i] = B[i] ~ A[i];
A[i] += T[i];

for (int i=0; 1i<N; ++i) {
double t = B[i] * A[i];
A[i] += t;

}

(c) Loop fusion: the two loops from 4a fused into one.

(d) Array contraction: the temporary array T from 4c is con-
tracted into the scalar t.

Listing 4: Loop fusion and array contraction in C.

Definition 2. Given a set of array operations, A, equipped
with a strict partial order imposed by the data dependencies
between them, (A, <), find a partition, P, of A for which:
1) All operations within a block in P are fusible (Def. 1).
2) For all blocks, B € P, if aq < as € ag and ay,a3 € B
then as € B. (I.e. the partition obeys dependency order).
3) The cost of the partition is minimal.

We will not go further into the detail of array operation
fusion but instead refer to [8] that describe the theoretical
groundwork and [7] that demonstrates its uses in Bohrium.

VI. BOHRIUM PROCESSING UNIT

The current backends for Bohrium support both CPU,
GPGPU and even cluster based setups. This illustrates the
flexibility in the programming model, and indicates that
the Bohrium runtime system can target different types of
hardware. While commodity hardware, such as CPUs and
GPGPUs, have a good price-to-performance ratio, they do
not offer the best possible flops-per-watt ratio, nor the lowest
possible latency.

To achieve a lower latency and a lower power consump-
tion, the ASIC?, or the related FPGA* are more promising
approaches. Unfortunately, both of these approaches require
designing hardware circuits, which is many times more com-
plicated than writing software, and thus entirely out of reach
for the average Bohrium user.

We have designed and implemented the core for a Bohrium
Processing Unit, which can execute Bohrium bytecodes, and
utilize the memory layouts used. A schematic overview of the
core unit is shown in figure 2.

The BPU is designed to work in a triple buffer setup, where
dedicated hardware units perform three actions in parallel:
read, execute, and write. Since the Bohrium bytecode is highly
regular, we know in advance what memory to pre-fetch, and
we have no need for branch prediction logic.

3 Application Specific Integrated Circuit
“Field Programmable Gate Array

Programming the BPU would be difficult, as the user needs
to keep track of what data is stored in the local scratch space,
while balancing this with the need to issue memory reads and
writes ahead of time, similar to how a user-controlled cache
would work. We have written a rudimentary compiler that
transforms a kernel from Bohrium into the instruction format
defined for the BPU, such that all these requirements can be
handled.

With this setup, it is possible execute a NumPy program on
an FPGA without knowing anything about hardware design,
or even modifying the program to fit an FPGA.

The BPU core shown in figure 2 is implemented in VHDL
and can be simulated and tested with existing FPGA design
tools. We have not yet implemented floating-point support, and
emulate access to an external memory bus. The next step is to
build a memory controller and connect it to a real memory
interface, such that we can feed multiple BPU cores with
a memory source. The memory controller will resemble the
GPGPU approach, where each core can access the memory
with varying offsets, but unlike the GPGPU, we know which
offsets each core will request in advance, due to the regularity
of the Bohrium bytecode.

The transpiler that converts bytecode to BPU instructions
is implemented in a very simple manner, such that it only
attempts to emit memory operations as much ahead of time
as possible. Rather than implement optimizations in the tran-
spiler, we are investigating filter transformations as the opti-
mization step. The cost function for determining the optimal
BPU program is different than for most others, as we have a
need to keep kernel memory usage small enough to be in the
scratch memory. If the kernels use too much memory, we need
to swap to the attached memory interface, which decreases
performance. Instead, it might be beneficial to partition kernels
into identical sub-kernels, that fit in the limited storage and
then stream the sub-kernels back-to-back.
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Machine:
VII. PERFORMANCE Processor:  AMD Opteron 6272
In this section, we will present the current performance gacrl; 521 GHz
results of Bohrium. We use Benchpress, which is an open L3 Cache:  16MB
source benchmark tool and suite. The source code for the Memory: 128GB DDR3
implementations and the Benchpress tool is available online®. Compiler:  GCC 4.8.4 .
P P Software: Ubuntu 14.04, Linux 3.13, Python 2.7.6, NumPy 1.8.2

For reproducibility, the exact version used can be obtained
from the source code repository®.

A. The CPU backend

In order to evaluate the CPU backend, we compare a serial
C implementation, a C++/OpenMP implementation, and a
Python/NumPy implementation of each benchmark. The C
and C++ implementations are handwritten and compiled with
GNU Compiler Collection using "-03 -march=native".
The Python/NumPy implementation is regular Python/NumPy
code without any hand tuning or other low-level optimizations.
We use the CPython 2.7 interpreter with the "-m bohrium"
option in order to utilize the Bohrium CPU backend.

We run all benchmarks on a machine with 32-cores di-
vided between four NUMA nodes (Table I). Figure 3 shows

Shttp://benchpress.readthedocs.org/
Ohttps://github.com/bh107/benchpress.git revision 0aa2942

TABLE I
MACHINE SPECIFICATIONS

the speedup results with the serial C implementation as the
baseline.

The C implementation of the Black Scholes benchmark
is compute-bound as the C++/OpenMP implementation show
by achieving a near perfect linear speedup using 32 threads.
The numbers reported by the Python/NumPy implementations
using Bohrium obtain super-linear speedup of x67.3 using
32 threads and a speedup of about x4.8 using a single
thread/core.

The Black Scholes benchmark relies heavily on exponenti-
ations. As seen in section IV we optimize the power function
(™) when n € N, which is exactly what we have here. This



Hand-tuned Bohrium
C++/OpenMP  Python/NumPy
[ Threads [ 1 2] 1 32|

Black Scholes 0.9 29.1 | 4.8 67.3
Heat Equation 0.6 7.1 0.7 7.0
Leibnitz PI 1.0 226 | 0.6 14.6
Monte Carlo PI | 1.0 29.8 | 1.0 27.8
Mxmul 1.0 9.5 | 1.0 14.9
Rosenbrock 1.0 21.0 | 1.2 15.8
Shallow Water 0.5 9.1 | 0.7 6.6

Fig. 3. Speedup results, serial C implementation used as baseline.

Processor: Intel Core i7-3770

Clock: 3.4 GHz

#Cores: 4

Peak performance:  108.8 GFLOPS

L3 Cache: 16MB

Memory: 128GB DDR3

Vendor: AMD NVIDIA

Model: HD 7970 GTX 680

#Cores: 2048 1536

Clock: 1000 MHz 1006 MHz

Memory: 3GB GDDRS5 2GB DDR5

-bandwidth: 288 GB/s 192 GB/s

Peak perf.: 4096 GFLOPS 3090 GFLOPS
TABLE 11

SYSTEM SPECIFICATIONS

is what gives the super-linear speedup.

B. The GPU backend

We have conducted a performance study in order to evaluate
how well the GPU-backend performs, compared to regular
sequential Python/NumPy execution. This study has been
previously published [2] and is by no means a study of how
well Bohrium with the GPU-backend, or NumPy utilizes the
hardware, it is simply an illustration of the magnitude of
speedup the end user can expect to experience, when using
Bohrium with the GPU-backend. Keeping in mind that the
transition from native Python/NumPy to Bohrium is com-
pletely seamless and requires no effort of the user. Wall clock
time is measured for all benchmark executions, which include
data transfers between the CPU and GPU.

We run all benchmarks on a Intel machine with both a AMD
and NVIDIA GPU (Table II).

The Black-Scholes application is embarrassingly parallel,
which makes it perfect for running on the GPU. Even with
the relatively simple scheme for kernel generation, the GPU-
backend currently implements; it generates only one kernel
per iteration of the main loop. The result is a very effective
execution that achieves a speedup of 834 times (ATI) and
643 times (NVIDIA) respectively for the largest 32bit float
problems (figure 4). Additionally, it clearly demonstrates the
comparably poor 64bit performance of the Kepler architecture
(NVIDIA). Note that the GTX 680 delivers 1/24 double
precision operation per single precision operation according
the specifications, which is worse than the ratio of 1:14 seen
in the Black-Scholes benchmark. This indicates that even in
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Fig. 4. Relative speedup of the Black-Scholes application running on the
workstation
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Fig. 5. Relative speedup of the SOR application running on the workstation

the embarrassingly parallel Black-Scholes application, which
generates the largest kernel and has the best operation to
calculation ratio, memory bandwidth still plays a role as a
limiting factor.

The SOR application is the most memory bound and the
least compute intensive of the four applications. Still, it is
clearly beneficial to utilize the GPU through Bohrium (figure
5). For the largest problem size, it achieves a speedups of 109
and 94 times for the single precision versions and 72 and 61
times for the double precision versions. Even for the smallest
problem size, it achieves a significant speedup. The drop-off in
performance for the ATI GPU for single precision from 8k X
8k to 16k x 16k is something that needs further investigation.

The shallow water application works on several distinct
arrays and has more complex computational kernels, compared
to the SOR application. The more complex kernel is why
we are able to get better performance. Again we observe
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Fig. 7. Relative speedup of the N-body application running on the workstation

the same drop off in performance for the largest problem
size — though this time on the NVIDIA GPU (see figure 6).
The more curious observation one can make from figure 6 is
that the ATI GPU performs much poorer than NVIDIA. ATI
has better specifications in both memory bandwidth and peak
performance. We will have to investigate whether the code we
generate favors NVIDIA GPUs, and if we can do something
to remedy this.

The straight forward algorithm used in the N-body simula-
tions computes distances of all pairs, expanding the N-body
data to O(n?) data points. While calculating the forces, the
data is reduced back to the original O(n) size. Due to the
simple algorithm used in the GPU-backend, the reduction will
force a kernel boundary, resulting in the expanded data being
written back to global memory, before being read again by
another reduction kernel — thereby being reduced. The large
space requirements, due to the all pairs expansion, also puts an

unfortunate limitation on the problem sizes NumPy is able to
run. Only the two largest problem sizes are theoretically able
to use all the core on the two GPUs, which leaves little room
for latency hiding. Still, the Bohrium GPU backend is able to
achieve up to 40-100 times speedup as figure 7 illustrate.

It is clear from figure 4—7 that the bigger the problem size,
the better suited it is for execution on the GPU. This is no
surprise since a bigger problem, will instantiate more threads,
better utilizing the many cores of the GPUs, and at the same
time enabling better latency hiding for the memory fetches.
It is also expected, that there is a certain initialization cost
for calling an external library, generating and decoding the
bytecode, generation kernels and source code and invoking
the GPU kernels. All of the experiments above have been run
for a small, but sufficient number of iterations that the initial
costs are amortized. To illustrate that the initialization costs
are not excessively large, all four benchmark applications were
run for just a single iteration. The Black-Scholes application
still shows a speedup of 10-500 times dependent on the
problem size for a single iteration. The SOR and Shallow
water applications show speedup for all, but the two smallest
problem sizes (up to 30 times). Finally, the N-body application
only shows speedup for the two largest problem sizes with a
single iteration — keeping in mind that it is only these problem
sizes that theoretically are able to utilize all cores. All the
experiments that do not show a speedup for a single iteration
has a total execution time of less than 0.4 seconds.

VIII. CONCLUSION

We have shown how Bohrium can be used as an easy way of
creating parallel programs without much fuzz. This is mainly
due to its tight collaboration with various array-programming
libraries.

Bohrium gets its interoperability from being component
based. These components are interchangeable and thus provide
freedom of use for the user. It is easy to change the code from
running on CPU to run on GPU instead, by just changing the
backend component.

Dedicated hardware for running Bohrium, the BPU, is being
investigated. With this we hope to achieve a better flops-per-
watt ratio than conventional hardware. This allows the user
of Bohrium to run their e.g. NumPy programs on dedicated
hardware, without knowing about how to actually program for
this hardware.

After code-generation Bohrium does various bytecode op-
timizations as well as array bytecode fusion. These opti-
mizations and fusions allow for Bohrium to run faster and
sometimes even faster than hand coded OpenMP code. Even
though Bohrium is not build for speed, it can be fast. In case
of the Black Scholes benchmark, Bohrium is actually 67.3
times faster than a serial C implementation, while a hand-
tuned C++/OpenMP implementation only gives a speedup of
29.1 for 32 threads.

Bohrium is thus an easy way to parallelize, and speedup,
your array programming code.
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Broadcasting in CSP-Style
Programming

Brian VINTER !, Kenneth SKOVHEDE, and Mads Ohm LARSEN
Unwversity of Copenhagen, Niels Bohr Institute

Abstract. While CSP-only models process-to-process rendezvous-style message
passing, all newer CSP-type programming libraries offer more powerful mech-
anisms, such as buffered channels, and multiple receivers, and even multiple
senders, on a single channel. This work investigates the possible variations of a
one-to-all, broadcasting, channel. We discuss the different semantic meanings
of broadcasting and show three different possible solutions for adding broad-
casting to CSP-style programming.

Keywords. CSP, JCSP, broadcasting

Introduction

The concept of broadcasting — emitting a message from one process and receiving in all
other processes in a group — has been debated in [1] and [2]. The work on Synchronous
Message Exchange, SME [3] stems from a lack of broadcasting in CSP. In this work the
authors will seek to establish the meaning of broadcasting and the possible benefit of
a broadcast mechanism in CSP-style programming.

Perhaps the easiest way to introduce the meaning of a broadcast mechanism is
to compare it with the well established one-to-any or any-to-any mechanism which all
modern CSP-style libraries offer [4,5,6,7]. With the any-to-any channel a message sent
by one process is delivered to any process that is ready to receive. Neither one-to-any
nor any-to-any channels are part of the CSP-theory, however they can be emulated using
multiple channels [8]. Contrarily a broadcast would be a one-to-all/any-to-all operation
where every receiving process on the channel would get a copy of the message. Figure 1a
and 1b seek to sketch the difference between a to-any and a to-all send operation.

i N P BN
n ) ) ) L) ) (]

(a) With the one-to-any model a message (b) The one-to-all delivers the message to
ends up at one process in the group all members of the group.

Figure 1. One-to-any and one-to-all communication.

Broadcasting is a common feature in message based parallel programming libraries,
such as MPI [9] and PVM [10]. The need for broadcasting stems from algorithms that

!Corresponding Author: Brian Vinter, Blegdamsvej 17, 2100 Copenhagen OFE E-mail:
vinter@nbi.ku.dk.
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need global synchronization. Broadcast may be used directly, that is for distributing a
new global bound value in a parallel branch-and-bound algorithm, or it may be used
in combination with a reduction, that is for determining the global change in a system
after an iteration in a converging algorithm.

In SME, broadcasts were needed for a set of processes to all know a given value for
the next simulated time-step, that is as a stand-alone broadcast. The use of reductions
followed by a broadcast is mostly known in performance oriented parallel programs,
though applications in the concurrency domain should not be entirely ignored. This
work however, only investigates the feasibility of a pure broadcasting mechanism in a
CSP-style library.

1. Broadcasting

Broadcasting as a concept appears deceptively simple however, several variations exists
that have a slightly different semantics. Fundamentally broadcasting is based on phys-
ical broadcasts, that is a sender transmits a message for anybody to receive, as shown
in Figure 2.

) B (o

Figure 2. Physical broadcast mechanism.

We may define simple broadcast as the basic mechanism shown in Figure 2; one pro-
cess may broadcast, any other process may receive. Thus, the simple broadcast mecha-
nism has no delivery guarantee, a broadcast that is received by no process is still de-
fined as a correct broadcast. Such a broadcast mechanism is of little use in real-world
scenarios, and is thus often not provided. UDP/IP datagrams may be broadcast and if
so it is done as stmple broadcast, that is any layer in the network stack may choose to
not propagate the broadcast. The only guarantee that the simple broadcast provides is
message integrity, that is the message is either delivered in full and as originally sent,
or not at all.

Simple broadcast may be improved to be a reliable broadcast. A reliable broadcast
mechanism has the added semantics that when a message is broadcasted, all processes
must receive a correct version of that message. Reliable broadcast does not guarantee
any ordering, that is two concurrent broadcasts by two different processes may be re-
ceived in different order by different processes in the system. While reliable broadcast-
ing may be physically intuitive, as sketched in Figure 3, the lack of total ordering is
still a limitation that makes programming harder in various cases.

Msg A Msg B
Msg B Msg A Msg B Msg A

) B B (o

Figure 3. Two senders transmits messages A and B at the same time, because of physical proximity
process zero will receive the messages in the order A then B, while process one will receive them in
the order B then A. This is still a correct reliable broadcast.

An example where reliable broadcast is not sufficient is described as follows: a
system consists of a set of fire detectors, fire alarms, and control boards. Imagine that
a detector, A, detects a false fire, that is a forgotten toaster, the person using the
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toaster immediately cancels the alarm using the control board A’, but then another fire
detector, B, detects a real alarm. If the broadcast message from B is received before
the cancelation from A’ then a non-counting alarm would falsely turn off, even though
a fire was indeed spreading.

Reliable broadcasting may be further improved upon to guarantee total ordering;
this type of broadcast is known as atomic broadcast. In the atomic broadcast all broad-
casts are received by all processes, and in the same order. This also implies that a pro-
cess that has failed, that is been unable to receive for some reason, cannot recover, but
must leave the system and, if possible, rejoin. If a system implements atomic broadcasts
the two processes in Figure 3 will agree on which order the messages A and B are
received. Whether they are received as A then B or as B then A is still not defined,
only that all processes will receive them in the same order.

A fourth broadcast mechanism which is well researched is the causal broadcast [11].
In this model a broadcast message B cannot be delivered to a receiver ahead of another
message, A, if message A was received by the broadcaster of message B prior to that
broadcast. Causal broadcasts however, has turned out to be very complex to implement
and harder to work with than atomic broadcasts, thus we will not investigate causal
broadcasts in this work.

Apart from delivery guarantees and message order broadcasts may be defined as
synchronous or not. A synchronous broadcast will only be delivered to a receiver once all
receivers are ready to receive, while an asynchronous delivery simply guarantees either
reliable or atomic broadcasts. In distributed systems synchronous broadcasts are not
available in any widespread libraries as the message cost becomes prohibitive, but in a
CSP-library context a synchronous broadcast could be more efficiently implemented.

Finally, conventional broadcast literature differentiates between broadcasts in open
and closed groups [12]. Open group broadcast means that a process, which is not on
the list of recipients may still broadcast a message to the group, while closed group
broadcasts require the sender to be a member of the recipient group.

2. Broadcasting in Message Passing Systems
2.1. Parallel Virtual Machines

The Parallel Virtual Machines library, PVM, supports group communication from ver-
sion 3. Since PVM has a rather low level approach to message passing messages must
first be packed into a message buffer and can then be broadcast to a group. The below
example in listing 1, adapted from the PVM man page, packs 10 integers from a variable
called array and then broadcasts the values, using the tag 42 to a group of processes,
called tasks in PVM, named worker.

info = pvm_initsend (PvmDataRaw);
info = pvm_pkint (array, 10, 1);
info pvm_bcast ("worker", 42);

Listing 1. PVM broadcast sender.

The receiver will then have to issue an ordinary receive and then unpack the data
as shown below in listing 2.

buf_id = pvm_recv(&tid, &tag)
info pvm_upkint (array, 10, 1)

Listing 2. PVM broadcast receiver.
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In PVM the messages are received by the individual recipients as ordinary messages.
PVM broadcasts are open group and provides only reliable broadcasts. In addition to
the broadcast operation PVM also provides a multicast operation where a group is
dynamically created from a list of recipients.

2.2. Message Passing Interface

Message Passing Interface, MPI, manages broadcasts rather differently than PVM.
Groups are defined as subgroups of the overall set of processes, called MPT_COMM_WORLD.
Message contents is defined like ordinary point-to-point messages, and addressing is
simply to a subgroup. The major difference from PVM is that the broadcast is issued by
all participants in the group, and a parameter in the broadcast specifies which process
is the sending and all others are then receivers. This approach means that broadcasting
in MPI is in closed groups only. A ten integer dense array broadcast example, from
process zero to all other processes in the program, then looks as below in listing 3.

result = MPI_Bcast (data, 10, MPI_Int, O, MPI_COMM_WORLD)

Listing 3. MPI broadcast.

3. Models for Broadcasting in CSP

From the existing systems that features a broadcast method, it is clear that such a
mechanism has a use and this would be interesting to provide in a CSP-style library
as well. Merging broadcast with CSP-semantics is not trivial, however, as we have
previously shown in the SME work [3]. In this section we sketch the various broadcast
styles one may imagine for CSP, and try to evaluate their feasibility for CSP.

3.1. Broadcast Messages

The simplest approach would be to introduce a broadcast message command,
channel.bcast (msg), similar to the semantics in PVM. With this approach, the li-
brary has to know about all processes that holds a reading end of the channel and then
relay the message to each such process as they issue read commands from the channel.
This approach raises a set of difficulties however; CSP dictates that the broadcast op-
eration does not return until after the operation has finished, that is when all processes
has received the message that was broadcast. However, it is not intuitive what should
happen to the channel while the broadcast completes, if we require the channel to be
blocked until the message is received everywhere then deadlocks may arise as other
processes may have agreed to exchange a point-to-point message on the channel. If,
on the other hand, we do not freeze the channel while the broadcast completes, other
patterns that are non-intuitive may occur. If one process, that holds a receiving end
of a channel, never issues a read on that channel then the channel will require infi-
nite buffer-capacity to remain functional. A broadcast may be received by all but one
process, and other messages have been passed as point-to-point afterwards, but if the
last process then terminates, the broadcast has never truly been completed and the
meaning of a broadcast becomes weaker.

An emulation of a broadcast message could be implemented as in Figure 4. This
naive network, and the theory behind, will be discussed in the next sections.
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Figure 4. A naive network for emulating synchronous broadcasting in CSP.
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3.2. Mailbozxes

A slightly more complex approach would be to introduce a mailbox system, similar
to mailboxes as they are found in Erlang, but with a subscription service so that a
set of processes can read the same message. A mailbox model is very intuitive for a
programmer to comprehend; a message is sent to a central position and all processes
may read it. However, this model does not include any synchronization as a CSP-
style programmer would expect. If the model is extended to synchronize — either by
announcing to the sender when all processes have read the message, or by introducing
a fully synchronous model — then the mailbox model is identical to the broadcast
message as described above.
A network using mailboxes for broadcast is shown in section 3.4.

3.8. Broadcast channels

A third approach to CSP-style broadcasting is to introduce dedicated broadcast chan-
nels. Such a broadcast channel has semantics that are identical to the synchronous
broadcast message in the first scenario. The difference is that with a broadcasting
channel there are no point-to-point messages that may be interleaved with broadcasts.
This way the deadlock scenario from the broadcast message cannot occur, the channel
provides synchronized communication as a point-to-point channel and may be used in
guarded expressions just as an ordinary channel.

The downside of this approach is that programmers must use another type of
channel. In JCSP this inconvenience is small as there is by design a large number of
channel types, in PyCSP the change is more radical as the single channel type must be
abandoned.
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3.4. Broadcast in CSP-theory

In the following section, primed processes (i.e. S”) will be used to show that the process
can live on afterwards.

Emulating broadcast channel in CSP-theory can be done with n processes. Here S
can broadcast a message to all of Fy_,,:

S=mlx — 9

P,=m?x — P/

S ( I B-)
=0

However, this is possible only, if we disregard the fact, that only two processes are
allowed to communicate with each other at a given time according to Hoare CSP [13].

If we instead want to broadcast, but adhere to the original theory, we have to do
something else. We will create a network of processes, where S will act as sender, B,
will act as a broadcast controller and F, ,, will be receivers. They will pass messages
using a two-phase commit protocol.

S=mlz = mux — 5

n
B, =m?r — ( | eile — ¢iaok — /) ; Mack — B
i=0

/
P =c¢?v — Ciack —7 P@

S B || (,H B)
1=0

Looking at the system with FDR [14] in Listing 4 we see that it is deadlock free.
A trace were verified where the message was received out-of-order.

N =3
PNAMES = {0..N-1}
MSG = {"MSG"}

channel mack

channel m:MSG
channel cack:PNAMES
channel c:PNAMES.MSG

S(x) = m'x -> mack -> S(x)
B =m?x -> (||| i1:PNAMES @ c.i'!'x -> cack.i -> SKIP) ; mack -> B
P(i) = ¢c.i?x -> cack.i -> P(i)

SYSTEM(x) = S(x) [I{Im, mackl|}I]
(B [I{lc, cackI|}I] || i:PNAMES @[{lcack, c.il}] P(i))

assert SYSTEM("MSG") :[deadlock free [F]]
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assert SYSTEM("MSG") \ {Ilm, mack, cack|}
:[has trace [T]]: <c.0."MSG", c.1."MSG", c.2."MSG">

Listing 4. FDR3 verified Broadcasting CSP-system.

This of course means that the broadcast controller must know how many receivers
there are present in the system and be able to pass messages to all of them on their
respective channels.

If we want to allow all processes to be the writer at a given time, we can model
this as alternation on the communication:

P, = <Ci!]} — Ciack —7 Pi/>D<Ci?x —F Cinox 7 lDZ//<x)>

n n
B.=[ (c{?x — ( | ejle = ¢jack — /)  Ciack — Bé)

1=0 j=0

JFi
B. | ( I B)
i=0

Here all the processes either write on their channel or read from their shared channel
with B..

The equivalent mailboxing scenario can be made with a mailbox process for each
receiving process. Here the writer will be able to continue, once all mailboxes have
ACK’ed back that they have received the message:

S=0blz — byx — S

n
=0

M;(x : zs) = <mi?y — My acx — Mi(z 2 s y))D(ci!x = Ciack — Ml(xs)>

P =c¢t = ciaoxk = P

SIBI <|| M) | B)

)

where : means CONS and x : zs is the head and tail of the message list. If one does
not need the guarantee on each mailbox having received the message, the ACK steps
can be omitted. This has been tested with FDR and found to be deadlock free. A trace
was also found with each process having received the message.

The mailboxing works for arbitrarily big buffers; in Listing 5 it is shown with a
buffer size of 5.

N =3

MAXBUFFER = 5
PNAMES = {0..N-1}
MSG = {"MSG"}
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channel back

channel b:MSG

channel cack, mack:PNAMES
channel ¢, m:PNAMES.MSG

S(x) = bl!x -> back -> S(x)
B = b?x -> (||| i:PNAMES @ m.i!x -> mack.i -> SKIP) ; back -> B

M(i, <>) m.i?y -> mack.i -> M(i, <y>)

M(i, xss) = if #xss > MAXBUFFER then M1(i, xss) else Ms(i, xss)
M1(i, <x>"xs) c.i!'x -> cack.i -> M(i, xs)

Ms (i, xss) M1(i, xss) [] (m.i?y -> mack.i -> M(i, xss”<y>))

P(i) = c.i?x -> cack.i -> P(1i)
MAILBOX = ||| i:PNAMES @ M(i, <>)
RECV = ||| i:PNAMES @ P(i)
COMM(x) = S(x) [I{Ib, backl|}I|] B

SYSTEM(x) = (COMM(x) [I{lm, mack|}|] MAILBOX) [I{lc, cackl|}|] RECV

assert SYSTEM("MSG") :[deadlock free [F]]
assert SYSTEM("MSG") \ {lb, back, m, mack, cack]|}
:[has trace [T]]: <c.1."MSG", c.0."MSG", c.2."MSG">

Listing 5. FDR3 verified Mailboxing CSP-system.

4. Related work

Both JCSP [1] (Java Communicating Sequential Processes) and CHP [2] (Communi-
cating Haskell Processes) offers a form of broadcast channel. In the former, a “one-to-
many” channel is implemented. This must know the number of readers when initialized,
and works by having two barriers, one before read and one after, so that all readers are
done reading, before the writer is released. The latter is implemented in a similar way,
where each reader enrolls to receive the same value from a single writer.

5. Conclusion

Broadcasting in CSP-style has been frequently discussed, and in the SME work replaced
by a bus-style channel [15]. While adding broadcasting to CSP-style programming ap-
pears appealing and straight forward it has yet not been added to any CSP-style library.
In this work we have outlined three approaches to adding broadcasting to CSP, and
concluded that while they are all possible, only the explicit broadcasting channel is able
to provide what the authors consider a CSP-style behavior and the common expected
functionality of a broadcast operation. The need for broadcasting in CSP-style libraries
is still an issue that must be investigated further, it is not obvious that broadcasting
has a general use in application where CSP is commonly used, but might be reserved
for fore traditional HPC style applications.
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ABSTRACT

Both high-productivity and high-performance are two often
sought after aspects of scientific programming. Python gives
the programmer high-productivity, but even with NumPy
it is often not high-performant because of the GIL', which
makes it inherently single threaded.

Bohrium intercepts NumPy calls and generates an inter-
mediate language, Bohrium byte-code, before being com-
piled to OpenCL kernels. It thus grants Python/NumPy
the ability to be easily run on multicore systems or GPUs,
without changing the source code.

The Bohrium byte-code can be optimized, by transform-
ing byte-code sequences into more performant ones. This
way, the scientific programmer will not need to change her
code to utilize special performant constructs.

CCS Concepts

eApplied computing — Physical sciences and engineer-
ing; eComputing methodologies — Parallel comput-
ing methodologies; Symbolic and algebraic manipulation;

Keywords

bohrium; numpy; algebraic transformation; byte-code

1. INTRODUCTION

Python is an interpreted, high-level, general purpose pro-
gramming language, which enables high-productivity and
readability. For scientific applications Python programmers
utilize NumPy [4], which has become the de-facto standard
for vectorized code?® for Python.

Bohrium [2, 3] extends NumPy, by allowing the code to
be run on multicore CPUs, clusters, or GPUs, without in-
terfering with the high-productivity aspect of Python. The
programmer only has to change the import from numpy to

!Global Interpreter Lock
2Also known as array-programming.
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bohrium, and the Bohrium runtime will take over, still uti-
lizing all NumPy calls internally.

The byte-code language operates on tensors® of varying
size and shape. Every time the programmer invokes a NumPy
method, Bohrium intercepts it and, if possible, does the
computation on e.g. the GPU instead.

Since Bohrium has multiple front-ends, e.g. Python, CIL,
C—++, this project will focus on optimizing the intermediate
language, that the Bohrium runtime generates. An opti-
mization would be transforming byte-code sequences that
can be rewritten into more efficient code, thus allowing the
programmer high-productivity as well as fast running code.

2. ALGEBRAIC TRANSFORMATIONS

A transformation can be thought of as a rewriting of ele-
ments from one set to another.

An example of such a transformation could be to realize
that

x"r—>mvw-~~-~m:Hm ifneN (1)

We can thus exchange the power-function for a series of mul-
tiplications or vice versa. This also holds true for tensors,
such that #'° = []*° z.

Another example of a transformation, one that requires a
more context-aware transformation, could be transforming
a solution of

Az =B

, where A and B are tensors. Usually we first have to find
the inverse A~! tensor to solve for .

Ar =B &
Az =A"'B &
r=A"'B (2)

Instead one could do a LU-factorization [1] of the same prob-
lem, which would usually be faster to compute. Note that
this is of course only faster, if we do not use the A~ tensor
for anything else in our computations.

The transformations can thus be small loop-fusion-like
contractions of byte-codes, or it can detect the semantic
meaning of the code, thus being more specialized and context-
aware.

3Multi-dimensional matrices.



3. BOHIRUM BYTE-CODE

Even though Python is an interpreted language, with Bohr-
ium we actually get a JIT-compiled intermediate language.
We can thus manipulate the byte-code before executing it.

In this byte-code language a single line encapsulates one
byte-code. A byte-code consists of an op-code, e.g. BH_ADD,
a result register, and up to two parameter registers or con-
stants.

In Listing 1 we have a Python program adding three ones
together in a one-dimensional vector of size 10.

import bohrium as np

a = np.zeros (10)
a += 1

a += 1

a += 1

print a

Listing 1: Adding three ones in Python.

In Listing 2 the same program is shown in the Bohrium
byte-code langauge.

BH_IDENTITY a0[0:10:1] O
BH_ADD a0[0:10:1] aO[0:10:1] 1
BH_ADD a0[0:10:1] aO[0:10:1] 1
BH_ADD a0[0:10:1] aO[0:10:1] 1
BH_SYNC a0[0:10:1]

Listing 2: Adding three ones with Bohrium.

Here, a0 is a vector register where our view is always from
0 to 10 with a step of 1. In further listings I assume the view
is the same for all registers, and thus will not write it out.

What this means is that we three times add 1 to all ele-
ments of our a0 tensor’s full view and store it back into the
full view.

3.1 Transforming the Byte-code

In the code example in Listing 2, we see each of the three
additions being their own byte-code. In reality our a0 tensor
could be very large, so large in fact that adding one to each
element would take a long time. Instead the constants of the
three byte-codes can be merged into one by simply adding
them together. After transforming the byte-code sequence,
we thus end up with only one BH_ADD op-code adding 3 to
each element, as shown in Listing 3.

BH_IDENTITY a0 O
BH_ADD a0 a0 3
BH_SYNC al

Listing 3: Optimized adding three ones with Bohrium.

By transforming we can also generate more byte-codes.
In the power-to-multiplication example we start with one
byte-code, BH_POWER, and can potentially end up with many.
Here it is important to know, that we usually only have
access to the origin and result tensors, since copying data to
create temporary tensors would be time consuming for large
tensors. For the power example from (1), we can get better
performance, still only using BH_MULTIPLY, by utilizing the
result tensor multiple times, instead of only seeing it as the
end-result. To do this, we can realize that

If we thus first calculate > = - = and store that in our
result tensor al, we can then multiply it with itself to get
z*. Multiplying this with itself grants us z® and then mul-
tiplying this with = twice gives us the result z'C.

In Listing 4 we have calculated z'° by multiplying first
our origin tensor by z and then 9 more times multiplying
the result tensor with z.

BH_IDENTITY a0 ... # initialize the tensor, x
BH_MULTIPLY al a0 aO # x°2
(x 7) # x°3..x79
BH_MULTIPLY al al a0 # x710
BH_SYNC ail

Listing 4: 7 to the power of ten, using nine BH_MULTIPLYs.

We could actually do better. Since we own the result
tensor, we are allowed to use it as we see fit. In Listing 5 a
better 2'° is shown.

BH_IDENTITY a0 ...
BH_MULTIPLY al a0 a0
BH_MULTIPLY al al al
BH_MULTIPLY al al al
BH_MULTIPLY al al a0
BH_MULTIPLY al al a0
BH_SYNC al

Listing 5: Z to the power of ten, using just five BH_MULTIPLYs.

4. CONCLUSIONS

Some of these rudimentary transformations have already
been implemented into the Bohrium runtime system. Bohr-
ium already supports merging integer addition, by adding
the constants, before adding it to the actual tensors. It also
does power expansion by default, since benchmarks have
shown, that for values close to a power of 2, multiplying
multiple times is faster than doing an actual BH_POWER.

A further study of real examples, such as (2), from imag-
ing software and benchmark suites is planned. If resulting
sequences is found to be too slow, a study on how to make
them faster will be made.
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Abstract

In this work we present an integrated system aimed at data
management and processing for scientific areas that work
with very large datasets. The Imaging Data Management
System, IDMS, seeks to support researchers in all steps of
their research, starting with transfer of data from the lab,
over managing and analysing the data, to final archiving of
the essential research project results. While IDMS is in fact
hosted locally at the university we seek to provide a user
experience that is as close as possible to a generic cloud
system, in order to allow users to share and collaborate on
their data seamlessly from anywhere.

1. Introduction

We see an enormous increase in data output from large
research facilities, e.g. supercomputers and synchrotrons,
which challenges the researchers in several aspects, includ-
ing just storing and moving the data around. Processing the
data also becomes non-trivial once you exceed the memory
or computational capacities of a conventional workstation,
since the researchers can then no longer just rely on their
own computers and familiar tools. While the computational
power of conventional workstation has grown and enabled
researchers to do more analysis, so has the size of scientific
data sets.

Since the data grow at an even faster rate than the com-
pute power, so does the need for researchers with scalable
computing skills. Yet, the common researcher appears to
have fewer computing skills than in the past, and even ba-
sic acquaintance with batch-processing on remote resources
often poses a major challenge.

* This material is based upon work supported by Innovation Fund Denmark.
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1.1 Motivation

An increasing number of scientific areas are collecting data
at exponential rates . The Large Hadron Collider at CERN
is a well-established facility producing more than 25 PB of
data per year[1], and it has a dedicated grid computing sys-
tem set up to store and process that data. However, several
other areas are beginning to produce data at similar rates. For
example astronomic observations, X-Ray/neutron imaging
and climate research all produce very large datasets by now.
A research area such as high energy physics has a long tra-
dition for data management, and the users have grown com-
fortable with managing complex data structures through cus-
tom interfaces, such as a Globus-based grid system[2]. Re-
searchers in other areas, such as X-Ray imaging, are far less
comfortable with complex data management and processing
systems. A researcher who needs to use a synchrotron for
X-Ray imaging of an object, will first go to the facility with
the object and perform the imaging experiment, which stores
data at the local system. The researcher then copies the data
to a set of USB hard drives and carries the data home that
way. Back home the researcher then opens the data, typi-
cally in MATLAB, and performs data analysis. Sharing the
data with other researchers is done by physically passing the
USB hard drives, and loss of data due to hard drives be-
ing lost or failing is not uncommon. Thus the current modus
operandi is not a reliable approach: data can be lost in transit
or during sharing, processing is slow, and for new and very
large datasets a conventional workstation with MATLAB is
simply not sufficient.

To address these challenges we have developed the Imag-
ing Data Management System, IDMS, that supports the en-
tire life-cycle of the data: from the time it leaves the data
production facility, through collaborative analysis and all the
way to the final research data archiving at the end of the
project. IDMS is run as a private cloud[3] system at the Uni-
versity of Copenhagen. There are several reasons to keep the
system internal, most importantly cost but also legal con-
cerns with e.g. medical images. However, the users are able
to use IDMS from anywhere in the world as with public
cloud systems. While internal users are able to log in with
their university credentials, the system is not limited to local
users, and IDMS allows researchers to seamlessly collabo-
rate with people outside University of Copenhagen.
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Figure 1. An IDMS schematic

2. The Imaging Data Management System

The Imaging Data Management System can in principle
handle any kind of data, but is optimized for data that can
be seen as images, either in 2D or as 3D representations.
The researcher can preview data, as images, directly in a
web-interface, and easily manage groups for transparent data
sharing.

2.1 Design

IDMS is based on the Minimum intrusion Grid, MiG[4]. In
MiG each user has a home directory where files and directo-
ries are stored. Sharing is done in workgroups, which are im-
plemented as Virtual Grids, VGrids[5], where the researcher
can create and administer groups without any administrator
involvement. In addition to sharing files in a workgroup it
is also possible to add computing resources to a workgroup
and thus share processing power as well, in essence allowing
a research project to define an internal project cloud. Indi-
vidual researchers thus have a single entry point to all their
data, and projects are represented as directories in their home
directory. It is possible to hierarchically define projects, to
create sub-projects and thus refine the granularity of shar-
ing data and resources. Figure 1 shows a schematic of IDMS
with four users, connected to two workgroups, one of which
has two computing resources.

2.2 Interfaces

Access to data is offered through a number of interfaces that
serve different purposes. The primary interface is the web
presentation, through which users can up- and download
data and where images can be previewed in 2D or 3D.
Figures 2 and 3 show examples of the web interface with
both views. Users can manage workgroups and configure the
remaining interfaces there, too. Additionally it comes with
archiving facilities and it also offers an import portal for data
from known sources. This way a user can eliminate the need
for migrating data to USB drives, and instead import data
directly from the remote facility. This pull feature ensures

Figure 3. A 3D Image view snapshot

that large datasets can be transferred into IDMS even after
the researcher has physically left the data acquisition site,
which would not be possible with only a push model.

In addition to the basic web interface researchers have
two more cloud-like interfaces in IDMS: their entire data-
home can be mounted as a networked drive, using SFTP
or WebDAVS. In addition to this personal home data mount
point, a user can also create anonymous mount points, which
rely on an auto-generated random string for access control.
These anonymous mount points refer to a directory in the
user’s space, and only expose data in that subset of the user-
home. The anonymous mount points are typically used e.g.
for lab PCs and for instruments like microscopes, to auto-
matically upload data to IDMS without exposing any other
user data if the instrument should get compromised. A re-
searcher may also choose to have parts of the dataset avail-
able in the local filesystem on their notebook and/or work-
station, which can then be synchronised to IDMS with the
built-in synchronisation solution. As in similar synchronisa-
tion systems a researcher may also use this feature to keep
two or more machines synchronised in addition to the copy
on IDMS. If a researcher needs to exchange data with a col-
laborator without explicitly sharing the data, IDMS offers di-
rect share-links. They can be used to allow a collaborator to
download a specific file or files from a specific directory, or
upload data to a specific directory. This is particularly con-



venient for exchanging data with project partners without an
account.

IDMS also supports the final archiving stage of the scien-
tific data management life-cycle. Once ready for that the re-
searcher simply uses the corresponding functionality on the
web interface to select files and create an archive of them for
long-term persistent storage. The researcher is then asked to
fill in metadata that describe the scientific data, and decide
if the data should be made publicly available or not. If the
data is made available IDMS offers a digital object identi-
fier, DOI, so that the researcher can receive citations on the
dataset.

2.3 Infrastructure

IDMS is running on a highly elastic and fault-tolerant in-
frastructure. Primary storage is based on JBODs with 60
SAS hard drives of 6TB each. Every JBOD is connected
to two servers. Currently each server has three connected
JBODs. Both servers operate half the disks which it com-
bines into five ZFS[6] RAIDZ-2 sets of 18 disks, each capa-
ble of sustaining a 10Gbps link. This setup allows a server
to act as a redundancy server if the other server should fail
by taking over responsibility of the 90 disks that become or-
phaned. The nodes are joined in a GlusterFS[7] filesystem
that presents the entire storage system as a flat namespace.
This approach is chosen over a parallel filesystem because
is allows IDMS to recover datasets directly from individ-
ual JBODs in a disaster scenario. In parallel with the disk
based storage IDMS hosts a tape-storage system for long
term archives. Tape storage is run through Tapr[8] which
allows us to manage tape without going through expensive
backup systems. At the time of writing IDMS has 1.6PB
disk-storage online, which hosts 1.1PB of user data. In addi-
tion there is 1.5PB tape storage, of which only a small frac-
tion is in use.

2.4 Processing

IDMS relies heavily on the underlying MiG infrastructure
for the automatic processing of tasks. MiG comes with a
number of services to handle everything from job queuing
and scheduling to basic web and advanced file access inter-
faces.

Event handling is a just another MiG service which al-
lows efficient detection of file changes and then acts on those
changes based on a set of rules. The rules are defined on
a per-user/workgroup basis and they can be configured to
do just about anything that a user could manually do on the
Grid. In the IDMS context we focus on just two kinds of
rules, namely those to handle actual processing and those to
cascade events. The latter work only locally to trigger other
rules, e.g. to force re-processing of data when analysis tools
are updated. The processing rules submit a grid job for ex-
ecution on a remote resource to offload the computational
work. IDMS uses both kinds of event rules under the hood
to provide the automatic previews of image data in particu-

lar. In addition users can explicitly configure their own rules
to handle their analysis flow(s) as one or more chains of data-
driven processes. For flexibility the flow paths can addition-
ally be set up to branch and merge if needed.

Similar, though not cloud-enabled, solutions include
CSP-builder[9], where a scientific workflow is defined in
CSP, and Taverna[10] which has no underlying formalism.
Many other workflow systems exist, but all are end-to-end
descriptions and not as flexible as the trigger system in
IDMS.

Any actual data processing maps to the submit action,
which takes a job description and the file event details as
input. It creates and submits a job specific to the particu-
lar rule. In that way the required functionality is provided,
without ever allowing arbitrary user code execution inside
the core IDMS system, but only on the dedicated compute
resources.

The actual event handling is implemented in an event
manager daemon, which monitors file changes and reacts
accordingly as outlined in Figure 4. It relies on the Python
watchdog [11] module, which in turn uses the inotify feature
when run on a Linux kernel. It detects and reacts to rele-
vant file changes without the need for continuously search-
ing through the entire file system; repeatedly traversing the
entire file system looking for changes would not only take
a long time, but also put a heavy load on the disk subsys-
tem of a server, and thus make ordinary user I/O slower. By
using inotify, on the other hand, immediate detection of file
changes is achieved without the disk search overhead. The
event manager monitors the file system and keeps a database
or dictionary of registered trigger rules to match file changes
against. The rules are read from disk during start up, and
then it uses another watchdog-listener to register any new
ones along the way. When the daemon receives a notifica-
tion about a file change through the listener, it first looks up
the path in the trigger rule dictionary, which maps file pat-
terns to actual rules. Thus, it is simple to run through the rule
keys to detect any matching patterns. In case of a match, the
corresponding rule is further inspected to see if the actual
state change also matches the rule, and if so the kind of ac-
tion determines the further handling.

Each rule is bound to a VGrid and associated with a path
or path pattern to match. The path is always considered
relative to the VGrid shared folder and any file changes
that match the path (pattern) will be considered in trigger
handling. Trigger events additionally come with one of four
file state changes: created, modified, deleted and moved.
Users can set up trigger rules to match one or more of those
state changes for specific files, or for all files that match a
given pattern with wildcards.

When a file change matches both a trigger file pattern and
the associated state change, the resulting trigger action will
be invoked for the file. If the trigger rule is set up with a
cascading action the corresponding file state change trigger
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event will be dispatched for the file(s) provided as trigger
arguments.

If on the other hand a trigger rule is set up with the
submit action, a hit will result in the supplied job template
being filled and submitted based on the file, that triggered the
event. For ordinary user trigger rules the user provides a job
template used by the resulting jobs. For preview generators
IDMS supplies the job template file on behalf of the user.
In any case the job template resembles the usual grid job
descriptions, only using variable keywords in places where
the job depends on the triggering file. It is currently possible
to use the following variable keywords to be expanded in the
job template:

+TRIGGERPATH+ : Full trigger file path

+TRIGGERRELPATH+ : Relative trigger file path
+TRIGGERDIRNAME-+ : Directory part of trigger file path
+TRIGGERRELDIRNAME-+ : Directory part of relative trigger file path
+TRIGGERFILENAME-+ : Filename part of trigger file path
+TRIGGERPREFIX+ : Base filename of the trigger file
+TRIGGEREXTENSION+ : File extension of the trigger file
+TRIGGERCHANGEH+ : Kind of file state change
+TRIGGERVGRIDNAMEH+ : VGrid defining the rule
+TRIGGERRUNAS+ : Rule owner ID

All occurrences of those variables are replaced by the
values for the trigger file, and then the filled job template is
submitted on behalf of the user who created the trigger rule
explicitly - or implicitly by enabling IDMS previews for a
folder.

When a submit action is handled for a file, the event man-
ager generates all the keyword variables mentioned above in
a lookup dictionary for that file and rule. Then it opens the
associated job template using the saved rule argument, and
expands all keyword variables there using the lookup dictio-
nary. Finally it saves the filled template in a new temporary
job file, and submits it to the grid queue on behalf of the rule
owner.

Processing flows are basically a set of rules that have
input and output in common in a way that output from one
rule is the target input for the next.

Figure 5. X-Ray image of a titanium implant in a goat jaw-
bone, it is easy to see that the upper part of the image is
corrupted during image acquisition

3. Use Cases
3.1 X-Ray imaging

This X-Ray imaging case uses data from a dental implant
research project. The overall flow in the project starts by a
goat having a tooth replaced by a titanium implant, after a
while the jaw holding the implant is removed and imaged on
a synchrotron to produce a 3D volume image. The purpose is
to determine the connectivity between the titanium implant
and the jaw-bone. Figure 5 shows an example of the images
that are produced.

3.1.1 Acquisition

Data is acquired with very high resolution on the European
Synchrotron Radiation Facility, ESRF. Imaging is done by
acquiring one image, rotating the object one third of a degree
and repeating. Each image is 3487 by 3487 pixels stored
at 32-bit floating point, thus one image takes up just over
46MB, and all images for an object sum up to more than
54GB. One hundred samples then accumulate to more than
5TB in total.

3.1.2 Data Transfer

The actual data we work on was transferred on 6 external
USB drives, but with the data import feature now ready in
IDMS, we can eliminate the use of USB drives for the next
set of experiments. Back at the university the data from the
USB drives were uploaded to IDMS by the user. This was
simply done by mounting IDMS as a net drive and using
drag-and-drop for the data transfer. As a USB drive can
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basically transfer one picture per second, it took 20 minutes
to transfer the pictures for one sample and 30 hours to upload
data for 100 samples.

3.1.3 Automatic Processing

While the data coming from the synchrotron are technically
images, they are not available in any common image data
format. Each facility has its own data format and they are
stored uncompressed. Thus, individual images are 46MB in
size, and they are not directly viewable. When images are
uploaded to IDMS they trigger a job that generates preview
images in the PNG format, as well as a small program
that collects statistics on the images, min, max, median and
variance. This automatic processing corresponds to the New
input part of the flow in Figure 6 only with the Reconstruct
part replaced by a Preview generation.

3.1.4 Reprocessing

The experiment is the first of its kind in the world and thus no
established method for analysis exists. This means that the
analysis program frequently changes, and new analysis must
be done very often. To facilitate this a trigger-rule was set up
for the analysis files, and when one changes, all analysis is
automatically re-run for all images. This makes the iterative
method of producing the best possible analysis method far
more efficient than if a researcher were to download one or
two images and optimise the analysis for those and then test
if the total dataset is fit for that analysis code. The automatic
re-processing corresponds to the Update analysis part of the
flow in Figure 6.

3.2 Climate Modelling

Climate modelling is done in pure simulation environments,
and the result is not images per se, but all data are presented
as visualisations in the form of pictures. Since the work flow
consists of a simulate step followed by a process results step,
a climate simulation is in fact similar to a physical imaging
facility.

3.3 Acquisition

Climate models are long-running simulations that produce
very large output-files. A common simulation will run on
about 16000 processor-cores and produce output for each
simulated three days. The researchers in the field would
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Figure 7. Global surface temperature from a climate simu-
lation

optimally prefer to save the state for every simulated six
hours, but the output size usually makes that infeasible. A
simulation is typically a system with a spatial resolution of
3600x2400 grid points, and with 62 layers. Each layer repre-
sents a single parameter and one such parameter can be visu-
alised as a picture. As an example Figure 7 is the visualisa-
tion of global surface temperature layer. When using 32-bit
floating point numbers, a single parameter layer alone takes
up 3600x2400x62x4 = 2GB. Since a simulation may involve
as many as 74 parameters, it means that saving one full state
takes approximately. 150GB. Depending on the speed of the
supercomputer the three-day simulation may be done in as
little as one hour. Thus a 30-day simulation produces ap-
proximately 100 TB of data.

3.3.1 Data Transfer

Supercomputer facilities always support remote data access,
so it was trivial to apply the data import feature for the data
transfer to IDMS.

3.3.2 Automatic Processing

The first step in post-processing of the data involves creation
of time series for each parameter - such as temperature, ve-
locity, salinity, etc. The simulations are saved in NetCDF
format, using a layout where each saved time step is com-
posed of a sequence of parameters. This interleaved layout
is sketched in Figure 8. The associated analysis programs
work on exactly one parameter at a time, thus building the
time series for surface temperature alone requires traversing
all 100TB of data. Once that is done the process can be re-
peated for salinity and so forth. Even with a dedicated 10Gb
connection this is 28 hours per parameter, and 85 days for a
complete simulation. L.e. close to three times the run-time of
the simulation. IDMS presents the time-series as images to
the researcher, which helps select interesting datasets for fur-
ther analysis without downloading all data; something that
would essentially also be infeasible due to the data sizes.
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Figure 9. Simulation results reformatted to individual pa-
rameters.

No analysis approach uses all parameters at one time - in
fact most analyses are on only a single parameter, and only
a few exceed the use of three parameters. So IDMS is set up
for processing the data for a very simple data split, where
the entire dataset is read through once and extracted into
individual parameters. They are then saved to individual files
for each parameter. This means that the 28h job of reading
through data is now done exactly once, and all time series
analysis is then reduced to reading through the actual data
for the parameter in question. The transformation changes
the data as seen in Figure 8 to a layout as sketched in Figure
9. We are currently investigating solutions for performing
the transformation at upload time in a streaming manner.
Then we can eliminate even the one 28h read-through of a
dataset.

3.4 Reprocessing

More advanced processing takes place as well, making ad-
vanced statistics and aligning with known physics. This is
done with the trigger system in IDMS and utilises mostly
the re-processing feature, where changes in an analysis pro-
gram triggers re-processing of all datasets.

4. Conclusion

The Imaging Data Management System is an internally
hosted cloud system from the University of Copenhagen.
It can be categorised as a private cloud system, but it of-
fers full access for users from outside the university in order
to facilitate collaboration between employees and external
partners. In principle there would be no problem in moving
the complete software stack to a commercial cloud vendor.
However, with the current size and traffic numbers this solu-
tion would not be economically feasible with the price levels
the market has today. The system currently hosts more than
1PB of data, and allows users to seamlessly view their im-
ages directly from a web interface, even for images that do
not follow standard image formats.

The system is continuously expanding its feature set, but
presently the features that users are offered are; a web-
interface for file upload and download as well as image

preview and management. The users may mount directly
into the storage using SSHFS or WebDAVS, and they may
have parts of their local computer mirrored in IDMS, or have
explicit backups done to IDMS. In addition, IDMS offers
permanent archiving of research data, including an option
for enabling public access to the data.
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Automatic Code Generation for
Library Method Inclusion in Domain
Specific Languages

Mads Ohm LARSEN*

Niels Bohr Institute, University of Copenhagen, Denmark

Abstract. Performance is important when creating large experiments or simulations.
However it would be preferable not to lose programmer productivity. A lot of effort
has already been put into creating fast libraries for for example linear algebra based
computations (BLAS and LAPACK). In this paper we show that utilizing these libraries
in a DSL made for productivity will solve both problems. This is done via automatic
code generation and can be extended to other languages, libraries, and features.

Keywords. Code Generation, Performance, Bohrium, GPGPU

Introduction

Many experimental sciences utilize high-performance libraries for simulations and experi-
ments. A lot of time and effort have been put into making these libraries specially suited
for various tasks, such as matrix manipulation (BLAS? [1]) or linear equation solving
(LAPACK? [2]). Since many of these libraries have been through multiple development iter-
ations, their APIs (Application Programming Interface) might not be very rigid. This can be
seen with the various implementations of for example BLAS such as cBLAS, Accelerate®,
c1BLAS, OpenBLAS, GotoBLAS, etc. These all have seemingly similar interfaces, but their
naming conventions might be different, and even two different versions of the same shared
object file might not link in the same way. As an example cBLAS and Accelerate have the
same interface for the same architecture, but for different operating systems. c1BLAS has a
different interface, but is also for a different architecture, namely GPGPUs. LACPAKE has a
different interface for the same architecture as Accelerate, but again, for a different operat-
ing system. Thus, calling the same LAPACK method with the either LAPACKE or Accelerate
installed, will demand two different implementations of your simulation.

The reference BLAS implementation, which was created in 1979, is written in FORTRAN
and is, subjectively, a bit out-dated. For example when calculating matrix multiplications, the
programmer needs to be aware of FORTRAN being column-major in its memory management.
The same is true for various other FORTRAN specifics. This can be seen in Listing 1, where a
standard matrix multiplication call is being issued.

Corresponding Author: Mads Ohm Larsen, Blegdamsvej 17, 2100 Copenhagen OE. E-mail:
ohm@nbi.ku.dk.

?Basic Linear Algebra Subprograms

3Linear Algebra PACKage

*Apple’s BLAS-implementation.
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// Calculates
// C := alphaxop(A)*op(B) + betax*C
// where op(X) is either X or X°T

cblas_sgemm (
CblasRowMajor, // Memory management
CblasNoTrans, // Transpose A7
CblasNoTrans, // Transpose B?
m, // Number of rows of op(A)
// Number of columns of op(B)

-

// Number of columns/rows of op(A) and op(B)
R // Alpha argument
// Array of size mx*k
// First dimension of A / Stride of A
_data, // Array of size kx*n
s // Stride of B

-

Q. O
[\
ct
[V

0, // Beta argument
data, // Array of size m*n
// Stride of C

BaQoB wrwPRNKNDB

~—

Listing 1. cBLAS general matrix multiplication.

import numpy as np
np.matmul (a, b)

Listing 2. Matrix multiplication with NumPy.

Listing 2 shows the same AB matrix multiplication, but with a higher level of abstrac-
tion, here written in Python using the library NumPy [3].

As a scientist using these libraries, you need to be aware of the different implementations
currently available on your system. You might also not have the same setup on your desktop
machine as the supercomputer on which you will later be running the code.

Since BLAS affords the greatest performance, programmers are forced to use it if
they want their simulations to perform. Various attempts at implementing BLAS have been
made [4,5,6], most of which just mimic the FORTRAN interface (cBLAS, Accelerate,
c1BLAS) and some that implements whole matrix libraries around it such as ViennaCL [7].

This is of course not only true for BLAS and LAPACK, but also for other libraries that
speed up performance or implement hard to do algorithms.

In this paper we extend our current programming suite with the ability to automatically
choose which library to link against and which API to use based on what is currently available
on the system. We will focus on Python and NumPy, and the fact that the user should be
unaware of the underlying library being used. Bohrium?® [8,9,10], as a DSL (Domain Specific
Language), has this performance and productivity relationship, however it loses some of
NumPy’s BLAS methods in the midst. This paper will rectify that by introducing extension
methods, that can be called from Python and which, in the end, we will wrap around NumPy’s
methods, so that the user will not even realize that they are calling specific BLAS methods.

The technique shown in this paper can be used for other languages and libraries as well;
to easily choose between already installed libraries and auto-generate code for their inclusion
and usage.

3 Available at http://www.bh107.org.
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1. Domain Specific Languages

DSLs are a way to minimize the particular knowledge needed by the programmer to write
domain specific code. For example with the previously mentioned BLAS method calls, one
would need to know about column-major versus row-major memory management and other
intrinsic parameters of the library methods. With a DSL we can circumvent that knowledge
gap. The programmer will still have to be taught a new concept, namely the DSL in question,
but the knowledge gap here might be smaller.

When creating a DSL you need to include a lot of different methods in order to still
encompass the same performance as with a more native programming language. Writing all
the boilerplate code for including these library methods in a meaningful way will quickly
become a tedious task. We should auto-generate as much code for these inclusions in the
DSL as possible.

1.1. Bohrium

In the experimental sciences, array programming [11] have become a popular programming
paradigm [12,13]. With it, one can express linear algebra problems without using pointer
arithmetic and other such low-level constructs.

NumPy implements the array programming paradigm for use in Python. Bohrium wraps
or overrides NumPy’s methods and defines a virtual machine, which executes instructions on
arrays. Bohrium can be configured to run on single CPU, multi-core CPUs, or GPGPUs, and
should thus perform faster than NumPy, since Python is inherently single-threaded.

The rest of this paper will use Bohrium as an example of a DSL that needs extension
methods.

1.1.1. Kernels

In order to run on multiple architectures, Bohrium generates kernels and compiles them just-
in-time (JIT) from an accumulated instruction set. These kernels can be specialized to run
on CPUs (OpenMP) or GPGPUs (OpenCL). This means that inside these kernels, we can
call other C or OpenCL library methods, like we normally would, had we coded everything
by hand. When computing simple things, for example summing up a vector, this will not
be necessary, however when we want to do more specialized things, for example matrix
multiplication, this might improve performance significantly.

1.1.2. NumPy’s BLAS Implementation

NumPy links against an existing BLAS implementation when first installing it onto a new sys-
tem. From then on, when calling upon matrix-matrix, vector-matrix, or vector-vector opera-
tions, NumPy will call BLAS to accelerate the code. This greatly improves the performance
of these matrix-matrix and other operations. Unfortunately, Bohrium has to do the matrix-
matrix operations as a reduction of multiplications, thus doing so as multiple nested for-loops
in the CPU/GPGPU kernels. The nested for-loops are of course slow compared to optimized
BLAS calls, which leads us to the topic at hand, namely extension methods for Bohrium,
allowing us to specialize these kind of method calls and have Bohrium call the same BLAS
methods as NumPy.

2. Extension Methods

Bohrium’s extension methods are methods that go a bit beyond the regular NumPy calls and
implementations for Bohrium. These are implemented as a flush in the Bohrium instruction
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set, followed by a call into the C++ backend. Here all the extension methods have the same
function-signature, namely they get passed the instruction at hand, with all of its attributes,
for example the arrays, the sizes, and so on, together with an engine when utilizing OpenCL.
They are in essence library methods that get called from Bohrium byte-code instructions,
which is a DSL.
This paper will focus on a subset of methods from BLAS, LAPACK, and OpenCV.

2.1. BLAS

The BLAS extension methods are divided into two parts: cBLAS/Accelerate and c1BLAS.
Both cBLAS and Accelerate implement the BLAS interface verbatim in C. c1BLAS are used
for running the kernels with OpenCL and thus its interface is quite different.

It is important to note, that even though they have similar names, coding for c1BLAS is
vastly different from coding for cBLAS/Accelerate, as you, the programmer, need to know
many OpenCL details prior to setting up these calls.

2.2. LAPACK

LAPACK is composed of linear algebra solvers, which are all useful when having a lot of
simultaneous linear equations to be solved. The reference implementation is again written in
FORTRAN and wrappers are then made for other languages, such as C. Accelerate imple-
ments these for macOS in a similar way to lapacke, which is the standard implementation
on Linux systems.

2.3. OpenCV

A completely different library is OpenCV [14,15], which works mostly with images and
are able to do various transformations and computations with them. One such operation is
thresholding, which looks at the individual pixels and caps them at a certain color value.
Another operation is eroding and dilating, which looks at neighboring pixels in order to figure
out if the current pixel needs to change. These operations are implemented in C++ around
OpenCV’s own matrix representation.

3. Code Generation

The code generation for Bohrium’s extension methods are done together with compiling
Bohrium itself, thus allowing it to link with the current libraries installed on the system. This
is however not JIT-compiled, as talked about previously, as it is only the actual kernels that
are JIT-compiled. Bohrium will automatically find an installed BLAS and LAPACK when in-
stalling it and put the location into its configuration file, for linking when JIT-compiling.

We do code generation in three steps. First we define a JSON-file with all the methods
and their options. Second we create a skeleton/template, for the code generator to fill. And
lastly, we run the actual generator, which combines these two (or more) files to a full-fledged
extension method.

As already stated, we can write all of these extension methods by hand, however, this
will quickly become a tedious task, as most of them are just composed of loading matrices
and then calling the various BLAS methods.
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3.1. JSON

First we create the JSON-file. This file (Listing 3) will contain all the methods, that we want
to generate as well as their options. The options will later be turned into boolean values where
only the ones specified are true.

"methods": [
{
"name": "gemm",
IltypeSII: [ IISII, lldll, ”C", IIZII ],
"options": [
"layout", "notransA", "notransB",
"p" np" N
AN ng" non
]
]
}

Listing 3. JSON-file with options.

Here, all methods are listed in the methods-array, each with a name, types, and options.
The name paramenter is the name of the function in the library, here BLAS. type are the
four BLAS types, namely single- and double-precision, complex, and double complex. Not
all methods have all four types, so we specify which ones apply.

From this one code example we can generate the four different gemm methods, one for
each type, and later let it be called from Bohrium and thus from Python.

3.2. Templating

In the templating step, we take four different files, namely header.tpl, body.tpl,
body_func.tpl, and footer.tpl, and compile them into the final library. The chosen tem-
plating library, pyratemp, uses the syntax @!VAR!@ for substitutions. This is abused for file
inclusions in a separate Python script, where we load all of the contents from the previously
mentioned files and substitute in various variables. Likewise, if-statements, that we will use
heavily, have the syntax <!--(if BOOL)--> ... <!--(end)-->.

The header.tpl and footer.tpl files contain the boilerplate, that needs to go before
and after all of the functions. These could be the C inclusions, the namespace definitions and
so on. A sample of header.tpl from Bohrium can be seen in Listing 4. At some point, we
write @!body!@. This tells the code generator, that we want the contents of the body. tpl to
appear here. Likewise this is done with @! footer!@ for the footer content.

In the Bohrium example footer we have extern C declarations for all the gener-
ated functions. This includes a constructor (blas_@!name!@_create()) and a destructor
(blas_@!'name!@ destroy()). The @!name!@ again comes from the JSON-file.

The body, which is presented in Listing 5, is the actual method implementation, which
does the setup of various components. For this example, we have omitted some of the setup
in this file.

#include <bh_extmethod.hpp>
#if defined(__APPLE__) || defined(__MACOSX)

#include <Accelerate/Accelerate.h>
#else
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#include <cblas.h>
#endif

#include <stdexcept>

using namespace bohrium;
using namespace extmethod;
using namespace std;

namespace {
@!body!@
} /* end of namespace */

Q! footer!@

Listing 4. The header. tpl used in Bohrium for BLAS.

struct @'uname!@Impl : public ExtmethodImpl {
public:
void execute(bh_instruction *instr, void* arg) {
// All matrices must be contigous
assert (instr->is_contiguous ()) ;

// A is a mx*k matrix

bh_viewx A = &instr->operand[1];

// We allocate the A data, if not already present
bh_data_malloc (A->base) ;

void *A_data = A->base->data;

<l--(if if_B)-->

// B is a k*n matrix

bh_viewx B = &instr->operand[2];

// We allocate the B data, if not already present
bh_data_malloc (B->base);

assert (A->base->type == B->base->type);
void *B_data = B->base->data;
<!--(end)-->

// Switch

} /* end execute method */
}; /* end of struct x/

Listing 5. Implementation snippet.

We first load the A and B matrix pointers from the instruction operands. The B-matrix

is only loaded if the B option was set in the JSON, which is the if if B scope in the above
snippet. Various other setup steps, that are identical for the methods we are generating, can

be present here.
In the body . tpl-file we have a switch-statement, that looks at the types given. This is

because Bohrium work with two different integer types, BH_INT32 and BH_INT64, as well as
two different floating point types, BH_FLOAT32 and BH_FLOAT64. We also operate with two
different complex types, 64-bit and 128. All of the ones needed can be specified in the JSON-
file. The body of this switch, in Listing 6, comes from the last file, the body_func. tpl-file.

switch(A->base->type) {
@!func!a@
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default:
std::stringstream ss;
ss << bh_type_text (A->base->type) << \
" not supported by BLAS for ’Q@!name!@’.
throw std::runtime_error(ss.str());
} /* end of switch */

n .
)

Listing 6. Switch snippet.

@!func!@ will be substituted in looped over each type. That is, for example for gemm we
give four cases, because we have four different types.

We can now look at the gemm method call from BLAS, which is in Listing 7. This should
look at lot like the actual call from Listing 1, just with more added for other cases.

case @!utype'!@: {

@'alpha'!Q@

Q@'!'betala

cblas_@!t!@@!name!@(
<!--(if if_layout)--> CblasRowMajor, <!--(end)-->
<Il--(if if_side)--> CblasLeft, <!--(end)-->
<!--(if if_uplo)--> CblasUpper, <!--(end)-->
<!--(if if_notransA)--> CblasNoTrans, <l--(end)-->
<l--(if if_transA)--> CblasTrans, <l--(end)-->
<!--(if if_notransB)--> CblasNoTrans, <!--(end)-->
<I--(if if_diag)--> CblasUnit, <!--(end)-->
<!--(if if_m)--> m, <l--(end)-->
<1--(if if_n)--> n, <!--(end)-->
<!--(if if_k)--> k, <!--(end)-->

@'alpha_arg!@,
(@!'blas_type!@x*) (((@!type!@x*)
k,

<t--(if if_B)-->
(@'blas_type!@x*) (((Q@!type!@x*)

A_data) + A->start),

B_data) + B->start),

n<!--(if if_C)-->,<!--(end)-->
<!l--(end) -->
<l--(if if_C)-->

@!'beta_arg!a@,
(@'blas_type!@x*) (((@!type!@*) C_data)
n
<!--(end)-->
)
break;

}

+ C->start),

Listing 7. Inner part of switch.

There is a lot of ifs in this method call, however, if we look at the JSON-file (Listing
3) we only set layout, notransA, and notransB for gemm. That means that only these lines
will get generated in the final library, for this method and type. The lines not surrounded by
ifs will of course get generated for all instances. Listing 8 contains the generated example
for gemm with BH_FLOAT32 type. This listing is almost identical to Listing 1, thus it should
behave the same as the actual BLAS calls.

case bh_type::FLOAT32: {
cblas_sgemmn (
CblasRowMajor,
CblasNoTrans,
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CblasNoTrans,

1.0,
(bh_float32*) (((bh_float32%*) A_data) + A->start),
k,
(bh_float32*) (((bh_float32%*) B_data) + B->start),
n,
0.0,
(bh_float32%*) (((bh_float32*) C_data) + C->start),
n

);

break;

}

Listing 8. Generated gemm for one case.

3.3. Generation

The generation in itself is handled by a short Python script, which reads in the template files
and fills in all the variables and if-statements.

To generate these BLAS calls alongside Bohrium, we add them to the CMake-files, which
will make sure to call this Python generator and generate the necessary libraries. The CMake-
files will check if you have for example BLAS installed on your system, and then generate the
BLAS extension methods. If you have c1BLAS, the OpenCL version for GPGPUs, installed, it
will also generate these methods and will let them overload the others, so that you are actually
running OpenCL on your GPGPU.

4. Examples and Results

All of the following experiments have been run on an Intel Core 17-3770 3.4 GHz processor
and a GeForce GTX 680 graphics card. The system was running Ubuntu Server 14.04 with
Python 2.7 and NumPy 1.12.1.

OpenBLAS 0.2.19 was used for the cBLAS interface and lapacke 3.5.0 was used for the
LAPACK interface. Both NumPy and Bohrium were linked to these.

In the following sections, the run times presented are an average of 10 consecutive runs.

4.1. General Matrix Multiplication

For general matrix multiplication we multiply two large matrices. For this example, we define
A as a matrix of size 2000 x 3000 filled with random 32-bit floating point numbers and B as
a random matrix with size 3000 x 4000. The resulting matrix C = AB will then be the matrix
product and of size 2000 x 4000.

For NumPy the matmul method will calculate the matrix multiplication. The same is true
for Bohrium, both with and without the extension enabled. The only difference between the
CPU and GPGPU/OpenCL Bohrium timings, is an environment variable BH_STACK=opencl
which has been set. This instructs Bohrium to run with OpenCL and thus run on a GPGPU if
possible.

The results for this general matrix multiplication can be seen in Figure 1. Here we clearly
see that BLAS is fast. NumPy, which utilizes this, is just as fast. The first Bohrium bar shows
the naive n3 algorithm. The second Bohrium bar shows that with the extension, it becomes
just as fast as BLAS.
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Figure 1. General matrix multiplication (C = AB) for multiple implementations.

NumPy does not utilize the GPGPU present on the system, c1BLAS does however, and is
thus much faster. Running Bohrium just with OpenCL does not speed up the code execution,
however utilizing the c1BLAS extension, it is just as fast as the native implementation.

It should be noted that the Python code used for the NumPy and all the Bohrium imple-
mentations is the same. All that is changed are environment variables and module imports.
The implementation for OpenBLAS and c1BLAS had to be handwritten. We gain a performance
speed-up of 4.7z when running Bohrium on the GPGPU as opposed to NumPy on the CPU,
with identical code, without having to hand write the kernels for the GPGPU, and thus not
losing productivity or performance.

4.2. Specialized Matrix Multiplication

BLAS has a couple of specialized matrix multiplication methods, one of which is symmetric
matrix multiplication. Here we assume that A is a symmetric matrix and then we just do the
same calculation as before C = AB.

To ensure that our random matrix is actually symmetric, we first obtain a random matrix

R and then let A = R+TRT, where the addition and division are done element-wise. Since A
is symmetric it has to be square, so instead of the dimensions from the previous test we let A
be a 3000 x 3000 matrix. B is still a 3000 x 4000 random matrix.

NumPy does not have a specialized method for doing this symmetric multiplication, so
we use the matmul from before again. The first Bohrium is also doing this matmul, while the
second is calling our new extension method, bohrium.blas. symm.

From the various run times in Figure 2 we see that you would not get much speed-up
using this specialized method, however running the same code on a GPGPU will grant you
around a factor 3z speed-up. Again we note that the two Bohrium times with the extension
method on only differ in an environment variable, while the ¢cBLAS and c1BLAS are two
completely different programs that both had to be written from scratch.

4.3. LAPACK Solver

For the next example, we will look at a LAPACK solver, namely gesv, which is the one
NumPy uses when calling numpy.linalg.solve(...). This solves the equation Ax = B
for x.

The tests are solving a system of 5000 random equations and assume them to be linearly
independent.
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Figure 2. Symmetric matrix multiplication (C = AB) for multiple implementations.
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Figure 3. System of equations solver (Axz = B) for multiple implementations.

Figure 3 shows the elapsed time for LAPACK, Numpy, and Bohrium with the LAPACK
extension. Again, Bohrium is just as fast as the implementation that it extends.

When utilizing Bohrium for array programming, we can thus use the same Python/NumPy
calls, but actually gain performance speed-ups, without losing the productivity gained from
Python.

4.4. OpenCV

A more real-world scenario, instead of just computing matrix-multiplications or solving
equations, could be utilizing some of OpenCV’s functionality. Here we look at erode, which
is a method that takes a binary image and an erosion kernel. The kernel is superimposed on
the image. Everywhere the kernel is completely contained inside the image, that is, the binary
sum is the same, we keep the center pixel, otherwise we remove it. This will give the effect
of eroding the image.

Figure 4 show the running times for OpenCV, NumPy, Bohrium, and Bohrium with the
OpenCV erode extension. Here we erode a random 10000 x 10000 pixel binary image. This
time Bohrium on its own performs rather nice, but with the extension method we can again
perform as fast as the library method.

Again, the code run by NumPy and Bohrium is identical, except for the module inclu-
sion, while the Bohrium extension implementation just calls the extension method directly,
instead of implementing it by hand.
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Figure 4. Erode for multiple implementations.

5. Conclusion

Productivity and performance are both important aspects of programming for the experimen-
tal sciences. Utilizing already implemented fast libraries are essential for having both. Most
times however, you cannot use the same piece of software on both your desktop machine,
whilst testing, and on a supercomputer, whilst doing the actual experiment or simulation.

Using DSLs that compile to your specific setup will improve productivity, however you
usually cannot include the fast library calls.

In this paper it is shown that using templating we can get both performance and produc-
tivity out of DSLs, here shown with Bohrium.

Implementing the linear algebra examples, that is matrix multiplication and general
solvers in Bohrium is easier than doing the same in C or C++, where the high-performance is.
Letting Bohrium call into these high-performance libraries grants Bohrium both performance
and productivity at no extra cost.

This approach can be further extended to other DSLs, which will then also gain these
performance boosts.

6. Future Work

6.1. Boolean Attributes

Being able to specify boolean attributes in the JSON-file would mean we do not need both
transA and notransA, as we could just specify that we want both generated. transA and
notransA should never occur at the same time, at least in the examples. This should be done
in some kind of inclusion/exclusion pattern.

6.2. DSL

A completely different approach to this would be to create a new DSL that allows us to
generate all the code from one file. This will be a DSL for creating methods in other DSLs.
So instead of having the JSON-file together with the template files, we could instead have a
DSL, where we could specify all the various snippets and options. This way, all will be in
one place and expanding this to multiple libraries might be even easier. This would also make
the code generation even more customizable, as opposed to always having to have a header,
footer, body, and body-function template file.
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Teaching Concurrency: 10 Years of
Programming Projects at UCPH
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Abstract.

While CSP is traditionally taught as an algebra, with a focus on definitions and
proofs, it may also be presented as a style of programming, that is process-oriented
programming. For the last decade University of Copenhagen (UCPH) has been teach-
ing CSP as a mix of the two, including both the formal aspects and process-oriented
programming. This paper summarized the work that has been made to make process-
oriented programming relevant to students, through programming assignments where
process orientation is clearly simpler than an equivalent solution in imperative pro-
gramming style.

Keywords. Teaching, Concurrency

Introduction

Concurrency is an important aspect of computing, especially today with multiple cores in
desktop machines, and, thus, it is naturally an important topic of computer science education.
For more than 10 years, we have been teaching some kind of concurrency course? at the
University of Copenhagen (UCPH). In this course, we teach both theory and practice about
classical concurrency problems, such as race conditions and deadlocks.

At the end of the course, students are expected to know about CSP (Communicating
Sequential Processes) concepts and notation, as well as some CSP-based libraries, such as the
occam programming language [1] and PyCSP [2]. The students are also expected to be able
to prove formal properties about processes in CSP-algebra, and design concurrent programs
using the CSP paradigm.

These topics are taught using an array of assignments, both theoretical and practical, as
well as lectures focusing on both of these aspects separately.

This paper focuses on the various programming projects, the practical assignments, that
the students have received during the last 10 years of teaching concurrency at UCPH.

As the title indicate the work here represents ten years of assignments and the curriculum
was not static in this period. Thus the workload is not necessarily comparable across the
assignments, and the expected knowledge of formal CSP also varies significantly throughout
the years. In the future work section, at the end of the paper, we try to outline how to remedy
this.

!Corresponding Author: Brian Vinter, Blegdamsvej 17, 2100 Copenhagen. E-mail: vinter@nbi .ku.dk.
2Called “eXtreme Multiprogramming”.
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1. Related Work

Various systems have been developed for use in teaching concurrency. Most of these have to
do with CSP, thought of by C.A.R. Hoare in 1985 [3]. Some examples of this is the occam
programming language [1], C++ CSP [4], JCSP [5], and our own PyCSP [2]. Recently, the
Go programming language [6] have also seen an increase in use. These systems all implement
Hoare’s theory to some degree, and can thus be used after having been taught some of the
CSP-theory.

All of these are fairly similar in how they function with regards to setup and communi-
cating via channels, which can be seen in listings 1, 2, and 3.

PROC writer (CHAN INT out!)
out ! 42

Listing 1: occam process.

class Writer : public CSProcess
{
private:
Chanout<int> out;
protected:
void run();
public:
Writer (const Chanout<int>& i);

};

void Writer::rumn ()

{
out << 42;

¥
Listing 2: C++ CSP process.

@process
def writer (chan_out):
chan_out (42)

Listing 3: PyCSP process.

2. Projects

When teaching concurrency at UCPH, we make it clear from the start, that this is not paral-
lelism. The distinction between concurrency and parallelism is often lost on some students,
but it will be emphasized that using the techniques taught might not increase your perfor-
mance, but you will instead be able to actually prove correctness about your programs. We
also emphasize the ease of expanding on a process-oriented solution.

The projects we have given the students have always been projects that offers a large
degree of freedom so that students may design their solutions more freely than what may
be done with a strict specification. This, of course, will increase the time spent on the work,
having to grade each student’s assignment in a different way, since there are no one particular
solution.
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The following sections will contain a plethora of assignments and exams that we have
given our students at UCPH. They have been divided into three categories: Games, Simula-
tions, and Control Systems.

2.1. Learning Goals

When the assignments were originally made we did not formally specify the learning goals
for each assignment, but merely adapted them to the progress in the class at the time the as-
signment was given. In order to make the assignments more easily usable we have reevaluated
all assignments and marked the learning goals for each of the assignments.

Obviously deadlock avoidance and absence of race-conditions are common learning
goals. Many assignments are deliberately programming language agnostic, but in a few as-
signments there are explicit targets for a specific language, either Python/PyCSP or Go. A
common problem is the connection of processes with channels, i.e. wiring. Wiring processes
in the assignments can have three different learning goals, simple wiring to a know topology,
dynamic wiring to match a given input, or to use process mobility. Simpler learning goals in-
cludes network termination and the use of subnets for compositionality. Several assignments
also have process mobility as a learning goal.

3. Games

The idea of programming computer games is inherently attractive to many students and sev-
eral game projects have been considered over the years, but most often dropped due to the
lack of an easy-to-use graphics library that works with a CSP-style design. PyGame is an ex-
ample of a library that meets all the requirements of game-writing, but also requires the pro-
grammer to use the concurrency mechanism within the library, which is not CSP-compliant
in any way. Thus the game based assignments we have offered have been text based, using
curses for simple ASCII graphics.

3.1. Multi User Dungeon (MUD)

A MUD game consists of multiple users and autonomous program agents. The purpose of
this assignment is to test the students ability to design and implement a concurrent design,
not to test their skills as a game-writer. A MUD game consists of a number of rooms a
player may move between, through designated doors. In a room there may be objects that
can be picked up; similarly a player can leave objects. A real MUD game will also have
an action component that allows fighting and dying; this is not required in this assignment.
The assignment stipulates that the solution should include channel and process mobility. The
learning goals are:

e Deadlock avoidance

e Absence of race-conditions
* Python/PyCSP

» Simple wiring

* Channel mobility

e Network termination

* Process mobility

Thus a game implementation must include:

* A few rooms.
* Doors the player can pass through to move from one room to another.
* A few objects that may be picked up and left again.
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* At least one autonomous agent that moves between the rooms as a programmed agent;
it needs not do anything but move around.

A player should be able to issue the following commands:

* look - should return a description of the current room, what is in the room, who is in
the room and a list of items that the player is holding.

* take - should pick up an object in the room, that is take gold should pickup the gold
in the room and the player now holds the gold (this is assuming there is any gold in
the room).

* leave - should taken any object the player is currently holding and leave it in the room
(this is the inverse of the take operation).

* N, E, S, W-should move the player through a door to the north, east, south, or west,
if such a door exist.

* exit - should end the game and terminate all processes.

A room in the game should:

* Be able to hold objects.

* Be able to host more than one player or agent at the same time.

* When a player or agent enters or leaves the room all other players and agents in the
room should be informed to the fact.

* A room may never be blocked for an extended time, that is only trivial operations are
allowed before the room again accepts commands (i.e. the room may execute any of
the supported player commands but nothing more advanced).

The game should support mutable users, programmed agents, and object mobility. To
validate the assignment we produced a small reference solution, sketched in Figure 1, that
takes input from a user and hosts an autonomous agent. The assignment is easily solved if the
students comprehend channel and process mobility. The reference implementation is written
in PyCSP and is implemented in roughly 150 lines of Python.

N

|
—

Figure 1. Schematic of the MUD reference implementation.

Observation. While hardly any students had tried MUD-style games previously the assign-
ment worked very well, and have been given twice now. The worst students tend to design
a centralized solution. The best students however utilize channel and process mobility effi-
ciently and end up with very small implementations. The most common problem that is ob-
served is termination where mobility issues may cause processes to not receive termination
signals.

3.2. Light Cycles

In this assignment, the students are asked to write a small version of the *80s arcade game
Light Cycles. The game should be written in the Go programming language, though PyCSP
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would probably work nicely as well. Since we are primarily interested in the concurrency
issues the graphics will be replaced by text. Students are encouraged to use the termbox
library for printing at a specific point on the screen. The learning goals are:

e Absence of race-conditions
* Go

» Simple wiring

e Network termination

The rules of Light Cycles are very simple; a field, which is surrounded by a barrier, hosts
two players, one of which is an Al player. As the cycles drive they leave behind a barrier. If
a Light Cycle hits a barrier the player dies and the other one wins.

The project in split into three problems:

Problem 1. Make a Go implementation of the basic Light Cycle game, players run at a
constant speed.

Problem 2. Improve your game to increase speed at time progresses, either continuously or
as discrete steps.

Problem 3. Improve your game to add difficult by adding a random piece of barrier in the
game area every 5 seconds.

Figure 2 is screen dump of a solution to Problem 1. The assignment lends itself strongly
to a CSP-style solution, and students who struggle with the communicating process approach
end up with very large solutions, and often erroneous. In addition to testing the students
understanding of communicating processes it also tests interfacing with external devices,
screen and keyboard, and the use of realtime injections to a process network.

Figure 2. Screendump from the reference implementation.

Observation. The Light Cycles game has only been tried once and the primary finding is
that the project is not well suited for a first experience with the Go programming language.
Overall the project works fine, here too the worst students tend to centralize their solution.
The need for real time progress of the game combined with the need to receive input from the
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user tests the concurrency mechanisms very well, and most students’ intuitively acknowledge
that the same task would be very hard in a non-concurrency environment. We will seek to
refine the assignment and use it again in the coming class.

4. Simulations

Simulations are often inherently concurrent, for example as in [7], and from a teaching per-
spective simulations are extremely well suited for assignments that test the students ability to
work with concurrency. While it is easy to model simple communication and compositional-
ity in simulation based assignments, process and channel mobility are often harder to think
in.

4.1. Train Simulation

In this assignment, students should design a system that simulates a railway system. Through-
out the assignment distances and time are unitless, that is a distance may be stated as 40 and
a speed as 10. This could be 40 km and 10 km/h, but may also be any other metrics, the dis-
tance unit is shared between the two units however, this approach is chosen to stop students
from moving into details that are not relevant for the assignment. While there are constants
in the assignment that allows them to solve the problems in closed form, they are required to
make their solution generic enough that these constants, and the rail-design can be changed.
The learning goals are:

¢ Deadlock avoidance

* Absence of race-conditions
* Python/PyCSP

* Dynamic wiring

e Network termination

* Process mobility

The assignment is split into three problems:

50

40 40

Figure 3. Simple train simulation setup.
Problem 1. For the system that is shown in Figure 3, determine if there are any collisions in
the following two setups:

* Train T leaves station A with destination station C, at time 0, running at speed 10.
* Train U leaves station D with destination station C, at time 0, running at speed 10.

and

* Train T leaves station A with destination station C, at time 0, running at speed 10.
* Train U leaves station C with destination station A, at time 5, running at speed 10.
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Figure 4. Advanced train simulation setup.

Problem 2. For the system that is shown in Figure 4, determine if there are any collisions in
the following two setups.

* Train T leaves station A at time 0, taking the path through I, J, K terminating in B,
running at speed 10.

* Train U leaves station A at time 0, taking the path through X, Y, Z terminating in B,
running at speed 10.

and

* Train T leaves station A at time 0, taking the path through I, J, K terminating in B,
running at speed 10.

* Train U leaves station A at time 0, taking the path through X, J, K terminating in B,
running at speed 11.

Problem 3. Now assume that the stations can hold any number of stationary trains. Extend
your simulation system to be a control system, in such a way that a train is never released
from a station to a track unless it will not collide with another train on that section of track.
If two trains at the same station wish to move down the same section of track they should do
so in the order they first requested to go, if the time is identical a random train is chosen over
another.

For this problem, the student is asked to generate their own flow of trains.

Observation. This assignment produced a surprising variety of solutions. There were so-
lutions where both tracks and stations were processes, some where only stations were pro-
cesses and one where only tracks were processes. Many students ended up discretizing time
in solutions that turned out to be less than optimal. The largest challenges tended to be the
representation of the rail-topology, and too many students spent much time on this. We con-
sider using the assignment again and provide the students with a sparse matrix structure that
describes the rail models to eliminate the time spent on that.

4.2. Bean-machine

The Bean-machine [8] was designed by Sir Galton to visualize the central limit theorem [9].
In this exercise students are asked to build a simulator of the bean-machine using CSP.

The student is asked to implement each “pin” in the triangle as a process, which may
receive balls from any of it two upper neighbors and passes it to any of the two neighbors
below. The bottom level sends to a counting bin. In the original form the pins should be fair,
that is equal chance of going left and right.

In addition, the simulation will need additional processes to simulate, bean/ball injection
and bin-counting. The learning goals are:

¢ Absence of race-conditions
* Dynamic wiring
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L]

Figure 5. A simulated bean-machine.

¢ Network termination
* Compositionality

Problem 1. Write a bean-machine with 2 layers, that is 3 bins, in the pin-pyramid.

Problem 2. Write a bean-machine that accepts an arbitrary number of levels in the pyramid.
Set it up to run 10 layers of pins, that is 11 bins. Setup the simulator to terminate after a
number of balls are either

* Put into the simulation.
* Received in the counting bins.

The students are then asked to run the 50 layer simulation to count 1000 balls/beans with
both termination options (i.e., injected balls and counted balls). Note, that in both cases the
number of counted balls should be exactly 1000.

Problem 3. Finally the students are asked to extend the bean-machine from Problem 2 with
a bias, that is if the beans were iron balls we could apply a weak magnetic field to skew
the probability to one side or the other. Add a process that includes an oscillator that sends
bias-values in the range [0 : 0.5] with increment/decrement of 0.01 at the injection of each
new bean/ball, to the bean-machine bias. Rerun the 1000 ball experiments from Problem 2.

Observation. The bean-machine has been used several times and in general works well. The
project tests most aspects of concurrency programming, though not all students manage to
include mobility. The assignment is also a fine test for the students understanding of compos-
ability, the best students will wire up the simulation with recursive components, where the
students build a preocess that is merely a line of processes and then form bloks of lines until
the full systems is build, while the less strong will do so with trivial nested for-loops.

4.3. Pedestrian Simulation

The project assignment is to write a cellular automaton that can simulate pedestrian behav-
ior [10]. Since we are working with cellular automata our world will be built from cells
that each work autonomously and communicate only with its Cartesian neighbors, that is
up-down-left-right but no diagonals.
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To keep the task simple we will make very simple pedestrian agents. Each agent has a
target direction which is also Cartesian, and will try to move forward in that direction. If the
cell an agent wishes to move into is occupied the agent will attempt to move orthogonally to
the target direction to an empty neighboring cell, if both these neighboring cells are empty
the agent is moved to one of the two at random. If the target cell and both neighbor cells are
occupied the agent simply remains in the present cell. If two agents both wish to move into
an empty cell one of them will make the move and the other will act as if the cell is full,
which makes the move should be non-deterministic.

The students may make their world as complex as they wish but as a minimum they must
implement a model of a 5-by-10 sidewalk. The learning goals are:

e Deadlock avoidance

¢ Absence of race-conditions
* Dynamic wiring

* Channel mobility

e Network termination

* Process mobility

Problem 1. Make a cellular automaton with the above rules and minimum size, and imple-
ment automatic injection of agents from at least two endpoints such that agents can in prin-
ciple collide. With the minimum sidewalk simulation, inject at both ends of the 10 cell long
sidewalk, a new pedestrian every 4 time-steps. After each update of the overall cellular au-
tomaton you should dump a snapshot of the cellular automaton to show where the agents are
placed, text is enough but graphics would be great. The simulation should be run to 200 time
steps.

Problem 2. Add a simple control interface, text interface is sufficient but graphic is fine too.
The interface should allow the person that executes the simulation to

1. Pause and resume the simulation.

2. Change the rate at which the agents are injected, allow values from 1 through 10
time-steps between injections.

3. Terminate the simulation.

Problem 3. Add support for having a tile occupied by a drunk. The addition of the drunk
should be through the interface from Problem 2. A drunk stays at this cell throughout the
simulation. Any pedestrian agent that comes within 3 cells of a drunk will change its preferred
movement to be orthogonal to its original direction until such a time as it is more than 3 cells
from the drunk and the resume the original preferred direction.

Problem 4. Make the drunken agent move around at random, if the drunk leaves the cellular
automaton it remains gone for the remainder of the simulation.

Student are asked to make sure that their report addressed how to model the cellular au-
tomaton with a CSP-programming library, and to make sure they reflect on potential concur-
rency and how to shut down the simulation.

Observation. The pedestrian simulation is a project that divides students in two groups; one
where pedestrians are passive messages and one where they are mobile processes. In the case
of simple messages all the control in the simulation is kept within the processes that describe
the sidewalk, while the solution that use mobile-processes can use a mostly generic grid of
processes for the sidewalk and have the agent-processes handle the rules. This of course
makes it easier to add a new agent type. The static pedestrian message is easily sufficient
to model all the requirements, and we thus consider changing the project slightly to add
requirements that will make the use of process mobility the easy solution.
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5. Control Systems

Assignments that ask students to write a control system for a physical system are extremely
well suited for teaching concurrency. Control systems are real-world examples where con-
currency is highly used and many systems have natural non-determinism that fits well with a
concurrency approach to problem solving. The challenge in building assignments on control
project is that the system that should be controlled usually will have to be simulated and the
students must either have a simulated system provided, the design of which may limit the
possible solution space, or be asked to write the simulation as well. The latter choice both
increase the workload and increase the chance that a misunderstanding on the students part
can make an assignment either trivial or overly complex.

5.1. An Autonomous Survey Robot

In this project the task is to program a control system for a simple robot that can navigate its
way out of a maze. The robot has three sensors and two actuators. The actuators control two
wheels, the sensors measure the distance to an object. The learning goals are:

e Deadlock avoidance

e Deadlock avoidance

e Absence of race-conditions
» Simple wiring

e Network termination

* Compositionality

Sensor

I Wheels I

Sensor ensor

Figure 6. A robot, 3 sensors and 2 actuators.

The wheels in the robot takes an integer in the range [—10 : 10|, where the value represents
the speed and negative numbers means going backwards. The sensors return a value in the
range [0 : 100], the value represents the distance to an object. Both actuators and sensors
should communicate through channels.

Problem 1. Design and implement a robot simulation that works as the robot described
above, that is two wheels and three distance sensors, all of which communicate through CSP-
type channels. Demonstrate that your robot can be navigated and detect obstacles.

Problem 2. Design and implement a small maze in your simulation.

Problem 3. Program your simulated robot to find its way out of a maze, using information
from its sensors as the only information it has. Show that your robot can find its way out of
your maze.
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Problem 4. Extend your robot to simulate hardware imprecision. To do this allow the robot
to spin one wheel slightly slower than the requested, 10%, that is if the wheel is asked to
spin at speed 1 it will go only 0.9, requested speed of 5 becomes 4.5 and speed 10 becomes
9. Extend your control software to detect that the robot drives off the expected path and add
Sfunctionality to realign the robot with maze walls.

The solution should work as a simulation of the robot-maze setup. The students are are
responsible for setting up a simple test scenario, making sure to test both positive and negative
acceleration, as well as uneven speeds in between wheels. In the report they must provide
CSP-diagrams that shows the final simulation setup, explains how they avoid deadlocks, live-
locks and how the overall simulation is terminated.

Observation. The robot-maze project turned out to have too many unspecified components
and the simulation environment was a large challenge for the majority of the students. We
consider repeating the project in a version that provides the simulated environment, while
still allowing students a high degree of freedom in their solution design.

5.2. Drone Control

A quadcopter, as shown in Figure 7, has four individual rotor. The overall exercise in this
assignment is to make a rudimentary control system for these rotors and thus the quadcopter.
The learning goals are:

e Deadlock avoidance
Deadlock avoidance

* Absence of race-conditions
» Simple wiring

e Network termination

» Compositionality

Figure 7. The Drone. The curved arrows inside the rotors indicates the rotation direction.

A quadcopter has the ability to pivot along three axes, x, y, and z. Since we do not have a
physical quadcopter to work on, we will work in a simulated environment. The physical laws
we simulate will be as follows. All values are unitless, we will work using

 Time units: [0 : 00).
* Distance units: [0 : 00).
* Engine speed units: [0 : 100].
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* Height units: [0 : 10000].
* Angle units: [0 : 359].

X-axis: If the engines on the left runs slower than the engines on the right, the quadcopter
will each in time unit increase its pivot by one degree per difference in engine speed. That
is if the right engines run at speed 50 and the left engines run at speed 48, then after 5 time
units the pivot will be 10 angle units.

The consequences of pivoting along the x-axis, called roll, is not simulated in our envi-
ronment. Thus pivoting in the x-axis is only used as information for correcting that pivot.

Y-axis: Pivoting along the y-axis, called pitch, follows the same rules as along the x-axis,
that is the difference in engine speed on the front and back engines dictate the pivot over
time, with the same ratios as with the x-axis.

If the quadcopter is pivoted along the y-axis it will move along the x- and z-axis, linear in
time. Movement in the x-axis depend on the direction of the pivot, if the front engines point
down then the movement along the x-axis is forward, if the front points up the quadcopter
moves backwards. In both cases the quadcopter will also move downwards.

Example: If the quadcopter has been angled 3 units downwards the quadcopter will move
forwards and downwards each 3 units per time unit.

Z-axis: Pivoting along the z-axis in this assignment is only defined when there is no pivot
on the x and y-axis, that is we will only model rotation around the quadcopter center without
any other movement. The movement is defined as with the other axis, but for pivoting in the
z-axis we work in the diagonal axis, that is the axis from upper-left to lower-right (LR), and
upper-right to lower-left (RL). If the engines on LR axis runs at 1 speed unit slower than than
the engines on the RL axis, the quadcopter will rotate counter clockwise 1 angle unit per time
unit, if the engines on the LR runs 3 speed units faster than the RL engines, rotation will be
3 angle units per time unit clock wise.

If all engines run at the same speed the quadcopter may move up or down. Height is
symmetrical around 50 speed units, that is if all engines run at 55 speed units the quadcopter
will raise by five height units per time unit, if they run at 48 speed units the quadcopter will
drop by 2 units per time unit. If all engines run at 50 speed units, the quadcopter will stand
still in the air.

Please note that the above physics simulation rules are hugely simplified and the actual
reality should be modeled with differential equations rather than linear. However, from a
control perspective this does not matter, so the above oversimplified rules are set up so that
the student can focus on the concurrency aspects, not physics.

Problem 1. Design and implement a simulation environment for our quadcopter simulations.

The simulation environment should receive information from the engines, and from that
input and the above rules produce the following simulated instruments:

o Altimeter - tells how high above ground the quadcopter is [0 : 10000] in height units.

* Compeass - tells how many angle units the front of the quadcopter is rotated relative to
its initial position [0 : 359)].

* Inclinometer-X - tells how many angle units the quadcopter pivots along the x-axis.

* Inclinometer-Y - tells how many angle units the quadcopter pivots along the y-axis.

You can assume that engine data translates into physics perfectly. Assume also that en-
gines are always symmetrical along some axis, that is we have only perfect relations that are
described by the physics rules.

Problem 2. Once your simulation environment is done, we can start making controls for the
quadcopter. First start to design and implement a control system that allows the quadcopter
to move in the z-axis, and stabilize.
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* Support a request to move from the current height to a requested height. Limit speed
to a maximum of 5 height units per time unit.

* Support rotating the quadcopter from its current angle to a required angle. Limit speed
to a maximum of 1 angle units per time unit.

As our quadcopter can now raise and rotate, we can start flying.

Problem 3. Add support for moving forward N distance units. Since the quadcopter drops
as it moves forward your control must level the quadcopter once it has dropped 10 height
units and raise to the height at which the forward statement was originally initiated. Once the
quadcopter has moved forward N distance units it should raise to the same height as well,
and then hover.

Problem 4. At this point your quadcopter should be able to run the following simple com-
mand sequence:
[raise to 1000; rotate 90; forward 100; rotate 90; forward 100]

Observation. The quadcopter assignment turned out to be more challenging in the simu-
lation part than expected, and several students ended up with a very sequential solution to
the simulation part which made most of the assignment rather trivial. If the assignment is
repeated we will provide the simulated environment as code to the students, and make the
core assignment more challenging by adding imprecisions to the control operations.

5.3. RAID System

This project is structured somewhat differently than the other projects we describe here. The
point of the project is to stress composability to the extreme; students are asked to build very
small elements, similar to the LEGOs from JCSP [11]. From these tiny processes students
are asked to build networks and then reflect on what the network does. This approach does
limit the degrees of freedom the students have for a solution, but makes network connections
and compositionality very clear to them.

For each question A through E the student is required to document their work with
a description and drawing(s). The point of the exercise is to make the students appreciate
the power of compositional processes, but due to the strict specifications in the assignment
the students are left with little freedom to design their solutions and instead spend time on
analyzing the results of what they did. The learning goals are:

* Deadlock avoidance
e Python/PyCSP

* Simple wiring

* Dynamic wiring

» Compositionality

Problem 1. Build the following micro components.

1. Numbers (0 input(s), 1 output(s)).

e Started with an iteration number, /.
* QOutputs the numbers 0. .. 255 in sequence.
* Repeated [ times.

2. Checksum element (1 input(s), 1 output(s)).

¢ Started with two constants; block-size, B, and checksum-size, C'.
* Inputs a sequence of bytes of length block-size.
* Checksum is )  data-sequence mod checksum-size.



14

10.

1.

12.

13.

B.Vinter et al. / Teaching Concurrency

* Qutputs a checksum every block-size bytes.

. Message duplicator (1 input(s), 2 output(s)).

* Inputs a message.
* Qutputs the same message on two different channels.
Integrator (1 input(s), 1 output(s)).

* Started with block-size.
* Receives block-size bytes.
* QOutputs block-size bytes as one message.

. DataContainer (2 input(s), 2 output(s)).

* Started with a capacity, V.

* Inputs N data-blocks and /N checksums - stores each pair.
* QOutputs NV data-blocks and N checksums - pairwise.
Daemon (1 input(s), 1 output(s)).

* Inputs a data-block and with probability P changes one, non-zero, element in the
data-sequence to 0 (probability is only for the entire sequence, not per element).

* Qutputs the, potentially changed, sequence.

Checker (3 input(s), 1 output(s)).

* Inputs a data-block, checksum, and checksums.

* Outputs the data-block, if checksum, = checksums, else outputs an error.

Separator (1 input(s), 1 output(s)).

* Inputs a data-block.

* Qutputs the elements in the data-block as a sequence once, one by one.

Elector (2 input(s), 1 output(s)).

* Inputs two data-sequences.
* If at least one of the data-sequences is not an error, output the data sequence, oth-
erwise output error.

Distributer (1 input(s), F output(s)).

¢ Started with a fan-out, F'.
* Inputs F' consecutive messages.
* QOutputs the messages, one on each of F' output channels.

Joiner (F input(s), 1 output(s)).

e Started with a fan-in, F'.
* Inputs F' data-sequences from £ input channels.
* Qutputs the F data-sequences in channel order.

XOR (2 input(s), 1 output(s)).

* Inputs first two data-sequences, a and b from two channels.
* Qutputs a & b (xor).

Rotator (F input(s), F output(s)).

e Started with a fan-in and fan-out, F'.

* Inputs on F' input-channels.

* Writes to F' output-channels, but starting with channel » mod F', where r it a
counter that says how many times the component has been active; that is first time
the start channel is 1, then 2 and so forth.
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Problem 2. Build a network, DataPipeline, using the components from the first problem f
the assignment. The network should take a sequence of bytes, store them with their checksums
in a container and then read them back while verifying the checksum, to test the data should
be challenged by the daemon. Use the Integrator at the appropriate place to transform from
a stream of bytes to a data-sequence, and the Separator for the inverse.

Use the following constants:
20

512

16 bit

10

0,0.2

2

FEQaR

Verify that all data are correctly passed through the network with P = 0 and that you
detect errors correctly with P = 0.2.

Problem 3. Now make another network, SafePipeline which has two DataPipelines
joined with the Elector, so that if any of the two data-sequences are valid the correct
data-sequence is output. Describe briefly how many processes and channels are in the
SafePipeline network and what common technology principle you have just implemented.

Problem 4. Build Redundant Pipeline by extending DataPipeline to include two DataContainers
that are then written to using the Distributer. The data from the distributer should be passed
through X OR and the output written to a third DataContainer.

Data from the fist two containers should be run through XOR with the data from the
third DataContainer. Then the data form each DataContainer should passed through an
Elector with the output from the XOR from the other DataContainer, the outputs from
the E'lectors should then be joined through the Joiner.

What have you built now? How many processes?

Problem 5. Extend the Redundant Pipeline by inserting a Rotator before the inputs to the
DataContainers and right after the outputs as well.

What have you built now? How many processes?

Observation. The RAID system is very different from the other projects, and the limited
degrees of freedom and the lack of mobility requirements makes the project less successful for
teaching concurrency. It does stress compositionality and the students did like the assignment,
however it is too easy and will not be used again in our class.

5.4. Cluster Monitor

The task in this assignment is using CSP-mechanisms to design and implement a system that
supports data collection and intervention from a dynamic set of machines. The learning goals
are:

Deadlock avoidance

e Absence of race-conditions
Python/PyCSP

* Dynamic wiring

* Channel mobility

e Network termination
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* Compositionality
* Process mobility

The scenario is a large set of individual computers, for example tens of thousands of nodes.
Each node will send one of three kinds of status messages when an event occurs:

e info.
* warning.
* critical.

We will be monitoring the following components:

* CPU temperature.
* Room temperature.
* Disk temperature.
* Memory error.

e Link down.

* Progress (time).

For each component we define a set of intervals or events that give the three different message
levels.

* Link down: critical.
* Memory error: warning.
* CPU temperature:.

* Change of 1° but below 60°: info.
* Change of 0.5° and value between 60° and 75°: warning.
* Change of 0.1° and value above 75°: critical.

* Room temperature:.

* Change of 1° but in range 20° — 25°: info.
* Change of 0.5° and values in range 15° — 20° or 25° — 30°: warning.
* Change of 0.1° and value below 15° or above 30°: critical.

* Disk temperature:.

* Change of 1° but below 40°: info.
* Change of 0.5° and value between 40° and 45°: warning.
* Change of 0.1° and value above 45°: critical.

* Time: If a node has not submitted a message for a period of one minute it should send
an info message that says alive. If a node does not send anything for two minutes
produce an info, for four minutes a warning and five minutes a critical (repeat
every five minute that the note has not sent a message).

Messages are sent as one string:
[TYPE] [NODE] [TIME] [COMPONENT] "STRING VALUE"
Examples could be:

Info 81 Wed Nov 9 14:19:11 2016 Disk 7.4C
Critical 5 Wed Nov 9 14:19:11 2016 Memory write error

Note that messages must be sent as one human readable string in this format.
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As a system may be very large, any number of receivers should be able to subscribe to
messages. A receiver should be able to make a selective subscription based on:

NODES, MESSAGE TYPE, COMPONENTS
For instance
[0:15] [Critical] [DISK, CPU]

could mean subscribe to critical messages concerning disk and CPU for nodes zero through
fifteen. The above format is just an example; you are free to define your own protocol.

The users should be able to support each other; thus two supportive functions must be
provided:

* Pass subscriptions.
* Listen in.

“Pass subscriptions” means that one listening client passes all its subscriptions to another
user, for example if an administrator has a lunch break another can take over the subscriptions.

“Listen in” should allow a user to add one or more other users to receive the messages
from its subscription, so that they may help locate an error.

Problem 1. You must write your own node simulation that produce status messages. Make
sure that the node simulator is also concurrent.

Problem 2. You should also provide your own simulated listeners, they can either be human
and/or logging mechanisms.

Your solution should be implemented using some CSP-oriented library. PyCSP or Go is
highly recommended.

The students are made sure to document their design with figures and explain the con-
currency issues and solution to them.

Observation. We expected the cluster monitoring project to be easily understood by com-
puter science students, unfortunately this was not the case and students spent a lot of time
understanding the actual problem. Several students tended to centralize the solution, espe-
cially the passing of responsibility, rather than using channel mobility. If used again, we will
redesign the assignment to be simpler from a context perspective and harder from a concur-
rency perspective, to reward the use of mobility.

5.5. Firewall

In this project the student must design a firewall. While firewalls do in fact work on network
protocols the assignment is based on CSP-type channels, where the first message sent on the
channel will be a three tuple (IP, PORT, reply_channel), that specifies the address and
port number of the required host, thatis (192.160.0.12, 22, <channel>) means that the
channel will connect to a machines with address 192.168.0.12 and a service that listens to
port 22 on that host, the service should reply on <channel>. To keep the service responsive
the server should create a new channel to which the connecting machine should send future
messages - similar to a conventional network socket-based connection.

The overall assignment seeks to design a scalable firewall where new features can easily
be added. The learning goals are:

¢ Deadlock avoidance
¢ Absence of race-conditions
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* Dynamic wiring

* Channel mobility
* Compositionality
* Process mobility

All programming should be done using PyCSP. There is an example of a simulated network
connection between two machines, without an intermediate firewall, with this text, you can
use this example as a baseline and introduce the firewall between them.

Problem 1. The basic firewall is based on information from a table which is an positive-list
of hosts and ports. Only addresses that are on that list can be connected to by incoming con-
nections. Table 1 shows an example translation list, if an incoming connection does not match
an entry in the translation list then the connection must be dropped. Dropping a connection
should be simulated by poisoning the reply channel.

You first programming part of this exam should implement a firewall that supports the
connection of legal requests and dropping of illegal requests.

HOST | PORT
10.0.0.12 80
10.0.0.22 21
10.0.0.28 22

Table 1. An example translation list.

For simplicity we will assume that our network connections only pass clear text mes-
sages. To increase the safety of the system all inflowing data must be inspected.

In this problem a list of words simulates the illegal contents, thus if a word from the
illegal list occurs in a stream the connection must be dropped, without forwarding the illegal
word or any of the following data to the recipient. Table 2 shows an example list of illegal
words. It is necessary to be able to change the list of illegal words at runtime - this means that
your solution should allow an administrator to maintain the illegal word list, without stopping
your firewall application.

{objects, java, php}
Table 2. An example illegal word list.

Problem 2. The second programming part of this exam should extend the firewall to support
packet inspection for illegal words, using a wordlist that can be changed at runtime, if an
illegal word is detected the connection must be poisoned. An example of such illegal words
can be found in Table 2.

During execution a connection may be selected for monitoring. This means that an op-
erator can ask to receive copies of all traffic on a channel for manual inspection or logging.
In addition, the operator should be able to shut down an open connection. The connection
may be identified in any way you feel is easiest, for example a connection may simply be
given an ID and the operator ask to get a copy of the information on a connection or to shut
a connection down, based on the ID.

Problem 3. The third programming part of this exam should extend the firewall to support
manual packet inspection for illegal words. The operator should be able to ask to see all data
on a channel and to shut down a channel.
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Observation. The firewall was a computer science specific context that worked very well,
students had an immediate understanding of the problem. The project seems to test all aspects
of concurrency and overall was very successful. We may add another question to the project
but as it is, this firewall is a fine project.

5.6. Train Break System

In this project a neck-tie-wearing boss has for some reason decided to buy an Italian made
train. As it turns out the trains braking system does not work>. The project assignment is to
design a new braking software system for the train. The learning goals are:

¢ Deadlock avoidance
¢ Absence of race-conditions
» Simple wiring
* Compositionality
On the train each wheel is attached to an electric motor, which works both as an engine and

a brake. The motor is controlled by a simple computer controls. That computer can control
and monitor the rotation speed of the wheel. The setup is shown in Figure 8.

Computer

Figure 8. Configuration af a single wheel.

The computer receives an absolute target speed in the interval [0 : 100] from a central
control unit. When the computer sets a new speed at the motor it should monitor the observed
speed of the wheel, if the observed change is larger than 1 between two observations the
wheel is malfunctioning, that is it may be blocking during a braking operation or spinning
during an acceleration. In this case the computer should split the acceleration in two steps to
help avoid the problem. Note that this solution may be applied repeatedly so that a large ac-
celeration, positive or negative, may be split into many smaller accelerations to avoid block-
ing or spinning the wheels. A wheel is part of a wheel-set, one on each side of the train, and
in addition to controlling the correctness of its own wheel a computer is also responsible for
coordinating with the other wheel in the same set to guarantee that both wheels are running at
the same speed which is necessary on rails. To ensure this the computers opposite each other
exchange observed speeds as they arrive. The setup is shown in Figure 9.

The solution software, based on a CSP-library of the students own choice, should im-
plement a train with 10 sets of wheels, that is 20 wheels, that may receive a target speed and
then reach that speed while compensating for blocking and spinning and ensuring that both
wheels are synchronized.

The resulting software should work as a simulation of the train set. The student is re-
sponsible for setting up a simple test scenario themselves, make sure that they test both pos-

3Unfortunately a really real story [12]
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Figure 9. Configuration of a wheel-pair.

itive and negative acceleration as well as wheel blockage, spin and uneven speeds in a set.
In the report they must provide CSP-diagram that shows the final simulation setup, explains
how their design avoid deadlocks, live-locks and how the overall simulation is terminated.

Observation. The train system was easily understood by the students, and most students did
well, though some did end up with centralized solutions. The many boundary conditions, test
the students ability to use composability and most students manage to write very scalable
solutions.

5.7. Ball Sorter

Imagine a machine for sorting balls according to color. The machine is shown below in Figure
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Figure 10. Schematic overview of the conveyor belt sorting machine.

Balls in three different colors fall from the input funnel every one time unit, and the
conveyor belt moves at a constant speed which makes the whole system synchronous. From
the time a ball passes under the camera and until it reaches the first bin, five time units pass.
Passing a bin takes one time unit and traversing the space between two bins takes two time
units.

The project assignment is to program a control system for the sorting machine. The
learning goals are:

e Deadlock avoidance

* Absence of race-conditions
* Python/PyCSP

* Simple wiring
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* Network termination
* Compositionality
* Process mobility (not required but makes a simpler solution)

The solution must tell every bin when to open so that it collects the balls of the color of the
bin. Each bin can hold ten balls, when a bin is filled the conveyor belt and the funnel must be
told to stop to prevent overflow, the system should be paused for five time units.

Problem 1. Design and implements, using CSP-mechanisms, the control system that behaves
as described above.

Problem 2. Assume now that the number of bins change from 3 to some other constant, the
distance between camera and the first bin, and the distance between bins does not change.
Change your solution to be able to handle an arbitrary number of bins.

Problem 3. Building on your solution from question 2, assume that the conveyor belt is wide
enough to hold a number of balls in parallel, and each row has a bin for each color. The
system is still controlled by a single camera. Extend your solution so that an arbitrary number
of parallel balls can be handled.

Problem 4. Provide a graphic representation of your solution, remember to name both pro-
cesses and channels.

The students are encouraged to use the same names for channels and processes in the
code.

Observation. The ball sorter as described above have some challenges with the injection of
balls and the communication with the camera, and some students fused the two to make the
solution mostly trivial. We will reuse the assignment but will try to provide the injection and
camera as code and ask the students to simulate and control only the conveyer belt and bins.

6. Conclusion

Based on ten years of teaching concurrency using loosely defined programming projects,
our overall conclusion is that the approach is fundamentally sound. There are pitfalls, most
importantly the risk of defining assignments too precisely, and thus dictating a single solution,
or describing assignments where the understanding of the application domain is too hard for
novice students.

Overall the conclusions are that the approach works; assignments based on games are ex-
tremely popular and makes students work very hard, unfortunately the lack of a good graph-
ics library that supports CSP-style programming is a hard obstacle. Simulation assignments
are very well suited for teaching concurrency and is in our experience the most successful
type of programming projects. Projects that aim at control systems are also very well suited
for concurrency and represent a set of problems that is easily related to real-world problems,
unfortunately they often require students to program a simulated test environment as well
which increase the workload and introduces so many degrees of freedom that some students
experience large challenges in designing a solution.

The primary conclusion however remains that games are in principle extremely well
suited but the lack of a game engine that supports CSP-style programming is a limitation.
Future work will, in addition to defining more projects and setting up a repository of projects
for sharing, is to make another CSP-style programming library that includes the features that
are needed for writing games.
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6.1. Future Work

The authors found the exercise of collecting the assignments quite useful ourselves, the di-
vision that project may be divided into Games, Simulations, and Control Systems was an
insight we ourselves did not get until we started a discussion on how to organise the assign-
ments. At the same time, it became obvious that the assignments do not directly compare,
neither in workload, prerequisites or learning goals. Thus we will move on to make the as-
signments more homogeneous, make assumptions of prior knowledge as well as what should
be learned from the project explicit and then publish the projects for others to use as an online
tool or software repository. In our collection of assignments, we often require the students to
solve the problem with a given programming language, this is not necessarily the best option
for a community tool and instead we will make recommendations to which programming
languages are well suited for the individual assignments.
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Case study: Bohrium — Powering Oceanography Simulation
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In the field of oceanography numerical simulations have been used for more than 50 years [1].
These simulations often require long integration time and can run for several real-time months.
They are thus often written in high-performance languages such as C or Fortran. Both of
these are often thought of as being complex to use. Fortunately we have seen a shift in the
scientific programming community towards focusing more on productivity as oppose to just
performance [2]. We would, however, like to keep the performance from these archaic languages.

Academic code often has a limited lifespan because the developers shift as people graduate and
new people arrive. Having to use a long time to understand the simulations will take away from
the actual science being made. Veros [3] is a Python translation of an already existing oceanog-
raphy project written in Fortran. It utilizes NumPy [4] for its vector computations. In order
to rectify the performance loss Veros have chosen Bohrium [5, 6] as its computational back-end.

Bohrium is a run-time framework that allows sequential interpreted code to be easily paral-
lelized and possibly run on GPGPUs. This is done by just-in-time (JIT) compiling generated
OpenMP, OpenCL, or CUDA kernels and running them on the appropriate hardware. Bohrium
also support multiple front-ends, namely Python, C, and C++. In Python this is done with
minimal intrusion, thus no annotations are needed, as long as the code utilize NumPy func-
tions Bohrium will override these and replace them with JIT-compiled kernels. Bohrium has
its own intermediate representation (IR), which is an instruction set gathered from the inter-
preted code up to a side effect, for example I/O. Well known compiler optimizations, such as
constant folding and strength reduction, can be applied to the IR prior to generating the kernels.

Other optimizations include using already established libraries such as BLAS [7] for low-level
linear algebra. Bindings to the appropriate BLAS library on your system is auto generated when
Bohrium is compiled. This means, that if you have for example c1BLAS installed, Bohrium will
create bindings to it, that can be utilized directly from Python. These will also overwrite the
NumPy methods already using BLAS for even better performance.

Using Bohrium of course comes with an overhead in form of generating the kernels. Fortunately
this overhead is amortized for larger simulations. For the Veros project we see that Bohrium is
roughly an order of magnitude faster than the same implementation using Fortran or NumPy
in the benchmarks. However, a parallel Fortran implementation using MPI for communication
is faster still. In the future we would like to utilize distributed memory systems with Bohrium,
so we can run even larger problem sizes, using possibly multiple terabytes of memory.
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Emit — Communicating Sequential
Processes in Ruby
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Abstract. CSP is an algebra for reasoning about concurrent systems of processes.
Being able to do so has become a necessity for computer scientists. Having to think
about abstractions like mutexes and threads in practice can be cumbersome, complex,
and erroneous. Ruby as a programming language has been described as fun to program
in. It is however missing a CSP framework that it can call its own. Emit, which is
presented in this paper, tries to mitigate this by providing such a CSP framework.
As a CSP framework, Emit makes it easy to think about processes, channels, and
communication. It is not yet feature complete, however comparing it to its nearest
peer, PyCSP, shows good performance for the COMMSTIME benchmark, where Emit
is 100 times faster.

Keywords. CSP, Ruby, Concurrency

Introduction

Being able to reason about large scale systems has become more and more of a necessity.
Many newer simulations are programmed to run on hundreds of thousands of cores and in just
as many different processes. CSP (Communicating Sequential Processes) [1] is an algebra
for reasoning about such systems.

Creating a network of processes and having them communicate can often be a cumber-
some, complex, and erroneous task. There exists many different models to choose from, when
thinking about concurrency, for example: threads, mutexes, shared memory, and fork/wait
just to name a few. As developers trying to reason about a network of processes and their
communications, we do not want to have to think about mutexes and thread handling. Instead
we would like an easy API (Application Programming Interface) to describe the network.

The Ruby programming language has long been missing a CSP framework of its own.
Yukihiro Matsumoto (Matz) — the creator of Ruby — has stated in an interview for [2], in
response to what feature of Ruby he would change, that: “I would remove the thread and add
actors or some other more advanced concurrency features”. An emulation of Go’s channel
and process model, which looks quite similar to CSP, already exists [3,4], but is more emu-
lating Go than CSP. A true CSP framework has yet to emerge. This paper presents such an
implementation, namely: Emit.

Emit is being developed at University of Copenhagen. Its goal is to show that CSP and
its abstractions can be easily understood without having to program large networks with
for example Go, or worry about strong types as with JCSP. PyCSP [5,6] is already used at
University of Copenhagen for its Extreme Multiprogramming course, however most students
opted for Go in its last run and many struggled with their solutions to the exam problems.

!Corresponding Author: Mads Ohm Larsen, Blegdamsvej 17, 2100 Copenhagen OE. E-mail:
ohm@nbi.ku.dk.
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Emit is still undergoing development and thus the API presented in this paper might change.
It is not entirely feature complete, but early experiments shows great performance when
compared to PyCSP and JCSP.

1. Programming in Ruby

Ruby is an object-oriented programming language, that borrows from, amongst others, Perl,
Smalltalk, Ada, and Lisp. It is reflective and dynamically typed, which means that, as the
popular Ruby saying goes: “If it looks like a duck and quacks like a duck, it is a duck.”.
That is to say, the objects do not need to be a specific type, to fulfill a specific purpose. It is
important to note, that this is not type coercion, but just objects fulfilling the same base types.
An example is that a lot of objects have a to_s (to string) method, so no matter what kind of
object, be it a String, Integer, Cat, Dog, or something else, you get, you will still be able
to call to_s onit.

What we need to know about Ruby for this paper is that Ruby has modules, classes, and
methods. We also need to know that everything in Ruby is an object, and can be treated as
such.

For CSP, this means that we do not need to concern ourselves about what type we mes-
sage over a channel, and as such, we do not need say IntegerChannel, FloatChannel, and
so on, but can have just one channel type. This also means, that we can transfer processes
and channels via channels and thus have mobility for free.

2. Introduction to Emit

The two main components of any CSP framework are processes and channels. An Emit pro-
gram will have many processes and many communications over channels. A channel in Emit
is further divided into reading and writing channel-ends, which is not part of Hoare’s original
theory, but is how JCSP also uses channels [7].

Let us first look at a very simple network of just two processes. Here one process sends
a message to the other and then the network closes down because both processes are done. In
Figure 1 this network is shown as a simple diagram with circles and arrows. The circles are
processes and the arrows are channel communications.

Figure 1. A simple network.

In CSP theory terms, this network would look like:

P=cx— Vv
P=clx - Vv
Py Py

The v* here represents a process with successful termination. In the implementation, it
could poison or retire its channels before termination, which we will look into in Section 3.3.
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require "emit"

def pl(cout)
cout << "Hello, world!"
end

def p2(cin)
puts cin. )
end

c = Emit.channel
Emit.parallel(

Emit.pl(-c),
Emit.p2(+c)

~

# => Hello, world!

Listing 1: A simple network written in Emit.

require "emit"
pl = Emit::Process.new(argl) { largl| ... }

p2_proc = proc { |argl| ... }
p2 = Emit::Process.new(argl, &p2_proc)

p3_lambda = lambda { |argl| ... } # or '->(arg1l) { ... }'
p3 = Emit.process(argl, &p3_lambda)

def p4_method(argl)

end
p4 = Emit::Process.new(argl, &method(:p4_method))

def p5_method(argl)

end
p5 = Emit.p5_method(argl)

Listing 2: Various ways of creating Emit processes.

The same network can be simulated with Emit shown in Listing 1. Here we create p1 and
p2 as methods, that takes a channel-end as argument. The channel is being created in a global
namespace and the channel-ends are being extracted with the unary plus, for the write end,
and minus, for the read end. The two processes are being run in parallel, by giving them both
as arguments to the parallel module method on Emit. Since both p1 and p2 are created in
a global namespace, the Emit module will know about them, and they can thus be called with
Emit.pl and Emit.p2.

Since Ruby is a highly dynamic programming language, we have various ways of setting
up each process in the parallel structure as seen in the previous example. Listing 2 shows
these various ways of doing so.

As a convenience for the user of Emit, we have made a module method process which
is an alias for Emit : : Process.new, so that you can use this shorthand every place you would
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like to create new processes. There is also the extra shorthand, shown in Listing 2 as p5,
where, if the method is created in a global namespace, the Emit module can be called with a
method of the same name.

3. Emit Implementation

Emit is implemented in pure Ruby. This means that Emit can run anywhere there is a Ruby
interpreter, which is virtually everywhere.

One aim of Emit is to make it easy and fun to program a CSP network, that easily passes
messages between processes. Within Emit, the user should never have to consider locks,
network exceptions, and the like. All of these are wrapped up inside Emit and should not
be accessed by the user. However, if the user wanted to, Ruby allows for them to reopen
closed classes and redefine already defined methods, so they can inject their own scheduler
or similar into Emits code.

Emit borrows a lot of ideas from the PyCSP implementation [5], which in turn looks to
JCSP [7,8,9] and C++CSP [10].

3.1. Processes

CSP processes are in Emit emulated with fibers [11]. Since everything in Ruby is an object,
we create a Process class under the Emit module, to encompass all the information about
a single process. This means that new processes are spawned, but not started, with the new
method. As already stated, we have added aliases so that we can call an implicit new method
instead, namely process on the Emit module.

An instantiated Process object knows a bunch of things. It has its inner code, called
a block in Ruby, as well as its arguments. It also knows that it has yet to be executed and
when you first instantiate it, it does not have a fiber attached either. When we get to run the
processes, the parallel method will start all the processes, which in turn will give them all
their own fiber to live in. These processes will not run, until the scheduler picks them up and
transfers control to their fiber.

3.1.1. The Scheduler

In Ruby, fibers work by the main thread transferring control to them. An example of Ruby
fibers can be seen in Listing 3. The yield class method on Fiber will transfer the control
back to whomever gave it to you, which could be both another fiber or the main thread.

The scheduler in Emit works by manipulating fibers and giving control to them one at
the time. Every process (fiber) is enqueued in the scheduler, when we run them. Then the
scheduler looks at the queue and pops the process that will run next. This process can be put
back at the end of the queue, if it starts communicating, and control be returned when both
processes are ready to communicate.

As only one process is in control in the scheduler at a time, we avoid starvation of
resources by switching away from that process as soon as it wants to communicate. Control
is then resumed, if another process also wants to communicate on the same channel. If we
ever get into a case where we would like to wake a process that is trying to communicate, but
without a counterpart, Emit will throw a DeadlockException as seen in Figure 2, Listing 4,
and the following algebra:

P Q)
P(x)=clz —» d?x — P (x)

Q(x)=dz — clz = Q(x)
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require "fiber"

©f1 = Fiber.new do

puts "F1: Hello to you too"

Fiber.yield

puts "F1: I'm done. (This will never print)"
end

@f2 = Fiber.new do
puts "F2: Hello F1"
@f1.transfer

end

puts "Main: I am going to resume Q@f2."
©f2.resume

# => Mawn: I am going to resume Q@f2.

# => F2: Hello F1

# => F1: Hello to you too

Listing 3: Fibers in Ruby.

require "emit"

def deadlock_process(cout, cin)
cout << 1
cin. )

end

Emit.channel
Emit.channel

c
d

Emit.parallel(
Emit.deadlock_process(-c, +d),
Emit.deadlock_process(-d, +c)

# => DeadlockException

Listing 4: Deadlock in Emit.

c

Figure 2. Deadlocked network.

3.2. Parallel and Sequence

The two main ways of running processes is parallel and sequence. In CSP terms these are
the parallel operator || and the regular sequence ;.

In Emit sequence works by just starting and running each sequential process, circum-
venting the scheduler. Parallel on the other hand will start each process, enqueue it into the
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Emit.parallel(
Emit.master(-chl),
10.times.map { Emit.worker(+chl, -ch2) },
Emit.sink(+ch2)

)

Listing 5: Parallel processes.

scheduler’s queue and join the processes in the end, which in turn starts the scheduler, so it
can schedule the processes to run.

Both Emit.parallel and Emit.sequence are methods that takes a list of processes. In
Emit this could look like Listing 5.

The 10 times here shows how to create many of the same process in Emit. parallel
can actually take an array of arrays of processes and will flatten this array into just an array
of processes, before running everything in parallel.

3.3. Channels

The channels in Emit work like those of PyCSP, having two channel-ends, the read and write
end, that can be used for only that purpose. All channels are therefore any-to-any channels, as
you can get as many read and write ends as you please. These channel-ends are usually given
to the processes as arguments, and can then be used in that process. A channel in Emit is
just another Ruby object, with associated methods on it. A newly instantiated channel object
has a write and read queue as well as the number of readers and writers. These two numbers
are known, because of the read and write ends being extracted from the channels, when the
processes are being instantiated. When a process needs an end, we can use the reader or
writer method, or their Emit aliases the unary plus or minus.

Communication from a reader’s perspective is done by putting itself into a read queue.
After that, it tells the scheduler, that it is waiting. This transfers control to the next process
in the scheduler’s queue. This next process could or could not be the process that will also
communicate on that channel. If it is, it will put itself into a write queue for that channel and
will then immediately notice, that there is a reader present. It will then proceed to tell the
reader to wake up with the message.

If the writer arrives to the communication first, the communication takes place in much
the same way, but with the writer being placed into a write queue first and the reader just
waking up the writer to get the message from it.

3.3.1. Channel Poisoning

Emit supports channel poisoning, first introduced in C++CSP [10] and JCSP [12]. If a process
decides to poison its channel, every subsequent read or write on that channel will be invalid
and throw an exception. This means that the poison will propagate through the network, and
every process not being handled will shut down, because of an exception.

In Emit, we only propagate the poison to other channel-ends that were given as argu-
ments to our current process. That is, if we create a new channel inside a process, Emit
will not automatically propagate the poison on this channel. These channels the programmer
would have to poison manually, via exception handling.

The poison itself works in the same way as in PyCSP, with an exception being thrown
from the channel. This exception can then be caught to make it close down the channel in
another way or do something else on a poison event.

A channel-end is poisoned in Emit by calling its poison method or the module method
poison on Emit. The latter takes a list of channels to poison all at once.
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def source(cout)
10.times { cout << "Hello, world!" }
Emit.poison(cout) # or cout.poison
end

def sink(cin)
loop { puts cin.() }
end

c = Emit.channel

Emit.parallel(
Emit.source(+c),
Emit.sink(-c),

)

Listing 6: Poisoning a channel in Emit.

Emit.parallel(
10.times.map { Emit.source(+c) },
10.times.map { Emit.sink(-c) }

)

Listing 7: Running multiple sources and sinks in parallel.

An example of channel poisoning can be seen in Listing 6. The same example can be
viewed with multiple of each type of process by changing the parallel construct to that of
Listing 7.

In the Listing 7 example we might encounter a classical poisoning problem. Since mul-
tiple source processes can be working at the same time, not all source processes might
be done, when the first process decides to poison the channel. To address this problem Emit
supports channel retiring.

3.3.2. Channel Retiring

Channel retiring as introduced in [6] works very similar to poisoning, but works by count-
ing the number of readers and writers. Every time you get a channel-end, this counter will
increase by one. When a process retires from a channel, it decreases the respective counter
by one. If one of the counters reaches zero, the channel has been retired and all subsequent
requests will result in an exception being thrown, similar to poisoning the channel.

Using this instead in our example in Listing 6 and 7, by replacing the poison call with
retire, we ensure that all sources are done, before the channel is poisoned and the network
is shutdown.

4. Results
4.1. COMMSTIME

An already established metric for measuring networks and communications is the COMM-
STIME benchmark [13]. Here we have four processes, often called: PREFIX (P), DELTA (D),
succ (5), and CONSUME (C).

Figure 3 shows how a COMMSTIME network could look and the following algebra should
encompass the entire COMMSTIME network:
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P(0) || D S | C(500000)

P(z) =clz — d?y — P(y)
D =clr — ((elvt = flv — D) O (flz — elx — D))
S=elv—>dl(z+1)— 95

C0)=v

C(n)=flr - Cn-1)

Figure 3. COMMSTIME network.

PREFIX is given O as an initial input and will keep reading from its input channel and
outputting the same on its output channel. DELTA will read on its input channel and output
the same on both its output channels. SUCC adds one to its input and outputs it.

In our results, shown in Table 1, we are using 2,000,000 communications to test the
system. This is done, by letting the CONSUME process count to 500, 000, as we have four
communication per round-trip. The timings in the results are an average of 10 runs.

Table 1. COMMSTIME results.

Framework ‘ Result (118/communication)
PyCSP 346.30
PyCSP (greenlets) 6.04
JCSP 22.55
Emit 3.79
Go 0.28

The lower we can get the time per communication the better. Obviously Go wins, hav-
ing this form of communication built into the language, but Emit is not that far off, only a
factor 10, which is quite impressive for an interpreted language without these features built
in. PyCSP with the default process type is a factor 100x behind Emit. Using PyCSP with
greenlets, Emit is still roughly twice as fast.

4.2. Monte Carlo 7 simulation

Another example we can look at, is the Monte Carlo 7 simulation. This is a classical
producer-worker-consumer network, where we have one producer, a numbers (10) of work-
ers, and one consumer at the end, collecting the results. The producer starts by producing the
tasks and the workers each calculate their own estimate of 7, that is then collected by the con-
sumer and averaged. This should show that Emit is capable of having multiple active readers,
the workers, waiting to read from the producer’s channel. Since Emit uses fibers, these will
still all run in the same process, so no true parallelism is being used, but the scheduler can
still choose different processes each time it gets to a read/write.
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def producer(job_out, bagsize, bags)
bags.times { job_out << bagsize }
Emit.retire(job_out)

end

def worker(job_in, result_out)
loop do
cnt = job_in. ()
sum = cnt.times.count { (rand**2 + rand**2) < 1 }
result_out << (4.0 * sum) / cnt
end
rescue Emit::ChannelRetiredException
Emit.retire(result_out)
end

def consumer (result_in)
cnt, sum = 0, result_in. ()
loop do
cnt += 1
sum = (sum * cnt + result_in.()) / (cnt+1)
end
rescue Emit::ChannelRetiredException
puts sum
end

Emit.channel
Emit.channel

jobs
results

Emit.parallel(
Emit.producer(-jobs, 1000, 10000),
10.times.map { Emit.worker(+jobs, -results) 1,
Emit.consumer (+results)

)

Listing 8: Monte Carlo 7 simulation in Emit.

An Emit Monte Carlo 7 simulation program is presented in Listing 8. An equivalent
program was written for PyCSP. The results (time) can be seen in Table 2. These again show
Emit to be faster than its inspiration: PyCSP.

Table 2. Monte Carlo 7 timings.

Framework ‘ Time spend (s)
PyCSP 6.65
PyCSP (greenlets) 3.55
Emit 2.54

5. Conclusions

Emit has been developed at University of Copenhagen. This is also the home for PyCSP.
PyCSP has been fortunate enough to have been used in the Extreme Multiprogramming
course given at University of Copenhagen for multiple years. This course is however depre-
cated and a new course will take its place. It is not certain that CSP will be taught in the same
way next year, so Emit might not benefit in the same way that PyCSP did from the students
taking the course.
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Emit has a lot of the same features as PyCSP. Many of these features are very prelimi-
nary, and thus lack further optimization. Emit is however shown to be a factor 100x faster
than PyCSP and only a factor 10x slower than Go.

Emit can be downloaded from Github [14].

6. Future Work

As Emit works with fibers, we do not have true parallelism yet. An implementation with
threads, OS processes, or some other parallel model could be interesting. Threads would
run into the same problem that PyCSP has seen, namely the global interpreter lock (GIL),
which means you cannot run multiple Ruby threads in parallel either, without going into C
or another low-level language.

Some of the core features, like selective alt, are still missing, but planned to appear in a
future release of Emit.
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Bohrium.rb — The Ruby Front End

Mads Ohm LARSEN ! and Brian VINTER
Niels Bohr Institute, University of Copenhagen, Denmark

Abstract. The acceptance of Ruby in the scientific community lags a bit behind, partly
because it is missing a good library for linear algebra and vector programming. It
has a matrix class in its standard library, but its execution tends to be rather slow.
Only a couple of actual scientific computing libraries like NumPy for Python exist for
Ruby. In this paper we introduce a new library called Bohrium.rb. Bohrium.rb acts
as a front end for the Bohrium framework, which generates and runs JIT-compiled
OpenMP/OpenCL kernels. It currently supports Python/NumPy and C++, however as
it is built of processes communicating hierarchically to each other, we can replace
the front ends with new ones. This new Ruby front end is described with examples
and is then compared to the standard library and an already established Ruby library
Numo/Narray, where Bohrium.rb seems to be faster for still larger matrix calculations.
This is also the trend we have seen in similar areas with Bohrium, being faster once
its overhead has been amortized.

Keywords. Ruby, Bohrium, parallel computing, OpenMP, OpenCL, JIT-compile

Introduction

Ruby, as a programming language, has always lacked impact in the scientific code commu-
nity. This is a shame, since Ruby have often been said to be fun to program in. Ruby has
a lot of the same capabilities as Python, but lacks a linear algebra package like NumPy [1]
for Python. To the best of our knowledge, there exist only a couple of packages in the Ruby
community that deal with the same problems as NumPy. One of these is Numo/Narray [2],
which we will compare our newly built framework against in this paper. Ruby also has a
matrix class in the standard library (STL), that is able to do some matrix calculations, but,
as we will see in the result section of this paper, it is rather slow and can be sped up a great
deal.

This paper introduces a new such framework for Ruby, that relies on the already es-
tablished automatic parallelization framework Bohrium [3]. The Bohrium framework, with
its Python/NumPy and C++ front ends, has already been presented and discussed several
times [4,5,6,7]. The focus has mostly been on speeding up the various NumPy methods and
comparing against other such Python frameworks or even hand-coded OpenMP or OpenCL
kernels.

We will start by given a brief presentation of the core concepts of Bohrium and then
introduce a new front end as well as performance results on using it.

1. Bohrium

Bohrium consists of a number of disjoint processes. As seen in Figure 1, each speaks with
the next by passing output and options along in a serial fashion. At the very top we find the

!Corresponding Author: Mads Ohm Larsen, Blegdamsvej 17, 2100 Copenhagen OE. E-mail:
ohm@nbi.ku.dk.
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front ends. As shown in Figure 1 we currently have Python, C++, and the new Ruby front
end, which this paper is introducing. The front ends speaks to a bridge, whose job it is to
translate the front end code to Bohrium’s intermediate representation (IR). This IR is then
optimized using various optimization steps, fused together in a manner that makes sense for
the back end and lastly given to one back end, that might pass it along to several others. The
back ends execute the generated kernels and return the results.

[PythoanumPy] r C++ | [ Ruby ]

\ J

{ { 1

' D

[ NumPy Bridge ] C++ Bridge [ Ruby Bridge ]

d
Block of
d

Bytecode
Bytecode
Optimization

\. J

\

Bytecode Fusion

\ J

N

[ GPU Backend ]

x[ CPU Backend ]

Figure 1. Process Overview.

The current back ends in Bohrium are OpenMP, OpenCL, and CUDA. These are each
capable of transforming Bohrium’s IR into code that can be executed on either a CPU or a
GPU.

Thus, writing simple code in one of the front ends will yield high performance archi-
tecture specific code for CPUs or GPUs in OpenMP, OpenCL, or CUDA depending on your
current environment variables and choices.

The claim of this paper is thus that the new Ruby front end will allow Ruby programmers
to generate fast array processesing code for execution on CPUs or GPUs.

2. Bohrium.rb

The Ruby front end is called bohrium, but to distinguish it from Bohrium the framework and
bohrium the Python package, we will discuss it here as Bohrium.rb?.

Bohrium.rb is a Ruby gem?® project, that allows Ruby programmers to get the perfor-
mance and ease-of-use out of JIT-compiling and executing OpenMP, OpenCL, or CUDA
kernels.

2rb is the common file extension for Ruby files.
3A self-contained Ruby library.
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The Python package for Bohrium overwrites already established classes, however, for
Bohrium.rb we have chosen instead to create a new array class, named BhArray, which works
similar to that of NumPy’s arrays. This takes away one of the selling-points of Bohrium:
the non-obtrusiveness. You will have to switch your code to use Bohrium.rb instead of the
STL. This, too, is true for the C++ bridge, where the programmer needs to use our interface.
This might be rectified in future versions of Bohrium.rb, but since the array programming
paradigm does not correspond with the Ruby STL, this might not be possible. That is, in
Ruby, the array class will work differently than the BhArray class does, in the sense that you,
for example, cannot add two STL arrays directly, as we will see shortly.

This new array class has many methods associated with it, some of which will be dis-
cussed in the following sections. In order to import Bohrium.rb we use the Ruby require
statement — require "bohrium". To keep the code examples in this paper short and to the
point, this require statement is omitted from most of them.

2.1. Bohrium and Ruby

Bohrium.rb installs when you are compiling Bohrium, simply by adding ~-DRUBY_BRIDGE=0N
to the CMake settings. This is off by default, since not everybody wants to install Bohrium.rb
on their system (they might not be coding in Ruby).

Figure 2 shows how Bohrium.rb works with Ruby. First we have some Ruby code being
executed by the Ruby runtime. In this code, we might encounter Bohrium.rb operations.
These operations will not be executed immediately, but instead will be collected in Bohrium
to then be lazily evaluated afterwards. We collect as many operations we can, until we need
to give a result back to Ruby, which in Figure 2 is represented by a side effect. Only when we
encounter a side effect does Bohrium kick in and actually execute all the commands. These
commands might be split up into several kernels, depending on their respective sizes and
shapes. After the side effect, the result is given back to the Ruby runtime, which can then use
the result as a normal Ruby array or scalar value.

—>

BhArray
operations

QA

Ruby code
being executed

\. J

l

Side effect ] Execute
| that uses result ) Bohrium IR

Append to
Bohrium IR

[ Start executing ]—>

Figure 2. How Bohrium works with Ruby.

In all the following examples we print the result. This is one of the side effects, which
triggers Bohrium to actually execute the operations.

2.2. Initialize a BhArray

The constructor — in Ruby called initialize — for BhArray takes an STL array as an argu-
ment. This array is copied into Bohrium memory and can thereafter be used in Bohrium con-
texts. This is shown in Listing 1, where we create a Ruby STL array, then use that to create a
Bohrium.rb array. Both are then printed and, as seen in the listing, both show the same array
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[1, 2, 3]

ruby_ary =
= BhArray.new(ruby_ary)

bh_ary

p ruby_ary # => [1, 2, 3]
p bh_ary # => [1, 2, 3]

Listing 1: Initialize BhArray with Ruby STL array.

# Create 5x1 array of ones
aryl = BhArray.ones(5, 1)
p aryl # => [1, 1, 1, 1, 1]

# Create 3z2 array (matriz) of zeros
ary2 = BhArray.zeros(3, 2)
p ary2 # => [[0, 0], [0, 0], [0, 0]]

# Create a range of length 10 starting from O
ary3 = BhArray.arange(10) # => could also be BhArray.seq(10)
p ary3 # => [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Listing 2: Initializing BhArray using various class methods.

printed out. The Bohrium array does not just have a reference to the Ruby STL array, but it
converts its own data to a Ruby STL array in order to print it. It does not keep the reference,
since we could later change the Bohrium array directly, which we would like to do, without
changing the Ruby STL array. This means that initializing a BhArray in this way is rather
heavy, since the STL array needs to be traversed and each value copied into a corresponding
Bohrium array.

Another way of initializing arrays in Bohrium.rb is via the class methods for BhArray.
This can be seen in Listing 2, where we use ones, zeros, and arange to create Bohrium
arrays. The arange method is taken from NumPy, and is kept in Bohrium.rb to compare the
two. It is aliased in Bohrium.rb to seq, which seems to be a more sensible name.

It is of course far faster to use the second type of initialization, as you do not need to first
represent the array in the Ruby STL format.

2.3. Working with BRArrays

In Bohrium.rb we have all the common math operators. You can add two arrays, which will
add them element-wise, subtract them, multiply them and divide two arrays with each other.
You can also raise an array to a power, take the cosine of each value, or bitwise and them all.
This is just like you are used to from the NumPy interface.

None of these things are possible directly with the Ruby STL. Here when you add two
arrays, you get an array of their summed elements, which is shown in Listing 3 together with
Bohrium.rb’s add method, here shown as the aliased binary + operator.

Since Bohrium is able to overwrite the source array, Bohrium.rb also support a couple of
so-called bang-methods?, for example add!. These methods are the same as their non-bang
counterparts, but will overwrite the source array in place. An example of this can be seen in
Listing 4. Internally in Bohrium you would get an IR as seen in Listing 5, where Bohrium
only allocates two arrays of size 5, instead of the two and one for the result.

4Called so because of the exclamation point, or the bang.
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bh_aryl = BhArray.ones(5, 1)

bh_ary2 = BhArray.ones(5, 1)

bh_ary3 = bh_aryl + bh_ary2 # Alzased from “#add"
p bh_ary3 # => [2, 2, 2, 2, 2]

rb_aryl = [1, 1, 1, 1, 1]

rb_ary2 = [1, 1, 1, 1, 1]

rb_ary3 = rb_aryl + rb_ary2

p rb_ary3 # => [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Listing 3: Adding BhArrays.

bh_aryl = BhArray.ones(5, 1)

bh_ary2 = BhArray.ones(5, 1)

bh_aryl.add! (bh_ary2) # => We use “add!" here
# bh_aryl was overwritien

p bh_aryl # => [2, 2, 2, 2, 2]

Listing 4: Adding BhArrays with bang-methods.

BH_IDENTITY al1[0:5:1] 1
BH_IDENTITY a2[0:5:1] 1
BH_ADD a1[0:5:1] a1[0:5:1] a2[0:5:1]

Listing 5: Bohrium IR for add!.

bh_ary = BhArray.arange(10)
p bh_ary[4] # => [4]

Listing 6: Indexing with a single index.

All the other math methods you could imagine are also present in Bohrium.rb, such as
arccos, logical not, floor, and so on. Bohrium also supports reduction methods; these
are all also present in Bohrium.rb, such as add_reduce, which we will use to show some
performance results later in section 3.2.

2.4. Views

When doing array programming, we often want to have just a view into our large matrices.
This can be done in Bohrium.rb by indexing into the BhArray, just like you would a normal
array. You can grab just a single element, by using for example the code in Listing 6. We
return a new array, since we always return a view — a portion of the entire array — even though
this is just a single element.

With the reshape method, we can reshape a BhArray from being one-dimensional into
being many-dimensional. BhArrays are one-dimensional when they are first created, so this
reshape method becomes essential for the entire program. For the sake of a simplicity we
will only concern ourselves with one- and two-dimensional BhArrays here.

In Listing 7 we see a two-dimensional array being indexed with a Ruby STL range. This
tells us to take the values in the first and second row and column.
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bh_ary = BhArray.arange(25) .reshape([5, 5])

p bh_ary #=>1[[0, 1, 2, 3, 4],
# [5, 6, 7, 8 9],
# [10, 11, 12, 13, 14],
# [15, 16, 17, 18, 19],
# [20, 21, 22, 23, 24]]
p bh_ary[0..1, 0..1]1 # => [[ 0, 1],
# [5, 6]]

Listing 7: Indexing with two Ruby STL ranges.

bh_ary = BhArray.arange(25) .reshape([5, 5])
p bh_ary[0..1, truel # => [[ 0, 1, 2, 3, 4],
# [ 5, 6,7 8, 971

Listing 8: Indexing with a Ruby STL range and true.

bh_ary = BhArray.arange(9) .reshape([3, 3]) # => [[0, 1, 2],
# [3, 4, 51,

# [6, 7, 811
bh_ary[0..1, 0..1] = 2
p bh_ary # => [[2, 2, 2],
# [2, 2, &],
# (6, 7, 811

Listing 9: Setting a view to a constant.

bh_ary = BhArray.arange(9) .reshape([3, 3])
bh_ary[0..1, 0..1] = BhArray.new([0, -1, -3, -4]).reshape([2, 2])
p bh_ary # => [[ 0, -1, 2],

# [-3, -4, &],

# [e, 7, 811

Listing 10: Setting a view to another view of same shape.

Instead of asking the array for its size, if you want everything from one of its dimensions,
you can simply add true as seen in Listing 8. This says to take the first and second row, but
all the columns in each of these. Had we reversed the order, we would have gotten all rows
for the first two columns instead.

Since we can now index into views, we should also be able to set views. This is possible
through the assignment operator []= on a view as seen in Listing 9. Here we again get the
first two columns and rows, and then we set them to the value 2 for all entries.

Another example of this is where we assign a different view to a view indexed in an
array as seen in Listing 10. All that is required is that the new view is the same shape as the
view that is being overwritten.

3. Results

The performance from Bohrium.rb comes from Bohrium’s ability to translate into the newest,
as of the writing of this paper (August 2018), OpenMP, OpenCL, or CUDA kernels. In this



[ S R S R

M.O. Larsen et al. / Bohrium.rb 7

aryl [2] * n
ary?2 [3] * n
aryl.zip(ary2) .map { |i| i.reduce(:+) }

Listing 11: ADD benchmark — Vanilla Ruby (zip).

aryl = [2] * n
ary2 = [3] * n
aryl.zip(ary2) .map(&:sum)

Listing 12: ADD benchmark — Vanilla Ruby (zip_sum).

aryl = [2] * n
ary2 = [3] * n
ary3 = Array.new(n)

aryl.each_with_index { |elem, idx| ary3[idx] = elem + ary2[idx] }
# ary3 has the result

Listing 13: ADD benchmark — Vanilla Ruby (idx).

section, we will be performing two benchmarks, to see how Bohrium.rb’s performance is
compared to the STL and to a similar gem already existing for Ruby: Numo/Narray. Numo/-
Narray has a similar API to NumPy and Bohrium.rb. The two benchmarks are fairly similar,
both add numbers; however they work on different datasets, the first on a one-dimensional
array, the second on a large matrix.

The speed-up numbers were gathered on a MacBook Pro with a 3.1 GHz Intel Core i7
processor and 16 GB 1867 MHZ DDR3 RAM. All benchmarks were run with the default
OpenMP setting in Bohrium, and with the default Numo/Narray settings. The numbers are
all gathered as an average across 10 runs.

3.1. Add

The first benchmark is simply to add a large set of numbers together. We create two arrays of
the same size and then add them together element-wise, like we saw in Listing 3.

As with everything with Ruby, there are multiple ways of achieving this with the STL.
In Listings 11 to 18 we see the different implementations of adding all numbers in the array.
For the matrix, Numo/Narray, and both Bohrium benchmarks, we have a matrix with a zero-
dimension instead of an array.

The first four vanilla Ruby implementations are different ways of implementing the same
thing. The fifth method uses the Ruby STL matrix implementation, which adds two matrices
in the way we would expect, namely element-wise.

The first zip method is the most idiomatic way of writing this adding scheme in Ruby?.

The results on running these 8 different benchmarks can be seen in Figure 3. This graph
shows speed-up compared to the vanilla Ruby zip implementation, since this is both the
most idiomatic, but also slowest, solution. For the very small cases, 10! and 10% (not shown
here), both Numo/Narray and Bohrium.rb are slower, because of the inherent overhead in
each. For the largest case here, 108, we see that Numo/Narray is a factor 2.2 faster than zip,
but it gets beaten by the more clever map! solution. Bohrium.rb seems to get the fastest, here

3As asked in a local Ruby user group.
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aryl = [2] * n

ary2 = [3] * n

aryl.map!.with_index { |elem, idx| elem + ary2[idx] }
# aryl 1s overwritten with the result

Listing 14: ADD benchmark — Vanilla Ruby (map!).

require "matrix"

ml = Matrix[[[2] * n]]
m2 = Matrix[[[3] * nl]
ml + m2

Listing 15: ADD benchmark — Vanilla Ruby (matrix).

require "numo/narray"

ml = Numo::Int64.new(n, 1).fil11(2)
m2 = Numo::Int64.new(n, 1).fi11(3)
ml + m2

Listing 16: ADD benchmark — Numo/Narray.

require "bohrium"
aryl = [2] * n

ary2 = [3] * n

a = BhArray.new(aryl)
b = BhArray.new(ary2)
a+b

Listing 17: ADD benchmark — Bohrium.rb (init).

require "bohrium"

a = BhArray.ones(1l, n, 2)
b = BhArray.ones(l, n, 3)
a+b

Listing 18: ADD benchmark — Bohrium.rb (ones).

2.8 x faster. The init solution is of course slower, since we have to create the STL arrays and
transfer than to Bohrium.rb afterwards, before computing the sum and returning the result.

Listing 19 contains the Bohrium IR for the program shown in Listing 18. Here we see
that all 1 x 10000 elements in a0 is set to 2. Likewise al is set to 3. Finally we add the two
arrays, and put the result into a2.

3.2. Sum

Summing columns poses a bit more challenging task. To begin with, we no longer have a
one-dimensional array — or a matrix with one dimension being equal to one. Instead we have
a matrix with a fixed amount of columns — here 1000. The number of rows are then increased
as the experiment goes on. The number of columns are the size of our result array, and are
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Figure 3. ADD benchmark results.

BH_IDENTITY a0[0:1:10000,0:10000:1] 2

BH_IDENTITY a1[0:1:10000,0:10000:1] 3

BH_ADD a2[0:1:10000,0:10000:1] a0[0:1:10000,0:10000:1] a1[0:1:10000,0:10000:1]
BH_FREE a0[0:1:10000,0:10000:1]

BH_FREE a1[0:1:10000,0:10000:1]

BH_FREE a2[0:1:10000,0:10000:1]

Listing 19: Bohrium IR for Listing 18.

thus, in terms of measuring the performance, not important, so we simply choose a random
number.

Again, as with the adding benchmark, we time both the creation of the matrix and the
work done, here summing each column to a single number, yielding 1000 numbers at the end.
The numbers in the matrix are consecutive numbers starting from 0. Thus this benchmark
tests both the generation of the sequential numbers as well as the ability to sum memory, that
lives in row-major order, efficiently.

The various implementations can be seen in Listings 20, 21, and 22. From this, it should
be easy to see, that the standard library is not suited for this kind of computations. The
Bohrium.rb and Numo/Narray implementations are fairly similar, because they both agree
that it should be easy to sum over an axis in a matrix. We could easily add sum as an alias for
add_reduce, however add_reduce gives a better sense of what is going on beneath.

Looking at the results in Figure 4 we see that Numo/Narray is fast, even for small ma-
trices, however it quickly start to decline and gets beaten by Bohrium.rb for 10° number of
rows, where Bohrium.rb is approximately 43 times faster than vanilla Ruby. The reason 10°
sees a decrease in speed-up for Bohrium.rb might stem from the fact that 10° rows times 1000
columns yields matrices larger than 16 GB of data, which cannot be stored in memory on the
MacBook Pro that the experiments were conducted on.

Listing 23 contains the Bohrium IR for Listing 22. Here we see BH_RANGE in action.
This is the seq method in the Ruby code. The BH_ADD_REDUCE is the add_reduce and the
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i=-1
ary = Array.new(r) { Array.new(c) { i += 1 } }
result = Array.new(c) { 0 }
c.times do |col_idx|
r.times do |row_idx|
result[col_idx] += ary[row_idx] [col_idx]
end
end

Listing 20: SUM benchmark — Vanilla Ruby.

require "numo/narray"
result = Numo::Int32.new(r * c).seq.reshape(r, c).sum(axis: 0)

Listing 21: SUM benchmark — Numo/Narray.

require "bohrium"
result = BhArray.seq(r * c).reshape([r, c]).add_reduce(0)

Listing 22: SUM benchmark — Bohrium.rb.

00 Vanilla
] 0 Numo/Narray
80 % /0 Bohrium
o 060x
=
)
8 -
» 40x
20x H
ox L=t e H:. :DH
102 103 104 10° 108

Problem size (number of rows)

Figure 4. suM benchmark results.

last parameter, the O here, is the axis on which we make the reduction. We notice that a0 is a
smaller array than al and a2, which makes sense, since we store the result here and we are
summing the 10° rows into 1000 columns.
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BH_RANGE a1[0:100000:1]

BH_IDENTITY a2[0:100000:1] a1[0:100000:1]
BH_ADD_REDUCE a0[0:1000:1] a2[0:100:1000,0:1000:1] 0
BH_FREE a1[0:100000:1]

BH_FREE a2[0:100000:1]

BH_FREE a0[0:1000:1]

Listing 23: Bohrium IR for Listing 22.
4. Future Work

Some work has been put into making Bohrium.rb user-friendly. We have different ways of
initializing new arrays as well as many ways of using the various math operators on them,
for example with both named methods and symbols, as well as overwriting (bang) methods
already popular in the Ruby community. We did however have to specify a new array inter-
face. This new interface has to be maintained. Instead we could try to “monkey patch® the
BhArray interface onto the current Array or maybe Matrix class in the STL. The Matrix
class already does several of the things we are interested in with Bohrium.rb, just internally
in Ruby instead of generating OpenMP or OpenCL kernels.

Most of the methods used in Bohrium.rb are defined in the Bohrium framework in a
JSON-file. On compile time this JSON-file is read and the entire Bohrium.rb gem is generated
from that. In the future we might have some intermediate steps, where we clean the JSON-file
or add/remove methods from it.

The utility methods for Bohrium.rb are all written in C++. These could be optimized
better. Bohrium.rb does not help the Ruby garbage collector to mark unused arrays yet, which
would be of huge benefit, for it to clean up, when an array is no longer referenced in future
Bohrium instruction sets.

5. Conclusions

We have shown a new Ruby front end for the automatic parallelization framework Bohrium.
This front end has the same basic features as NumPy for Python does. This means that pro-
grammers can now achieve automatic parallelization with the Ruby programming language
by requiring and using bohrium.

We have also shown that Bohrium.rb is faster than the already established library Numo/-
Narray when considering large matrices. Where Numo/Narray only beats the STL by a factor
of 7x, Bohrium.rb is 15.5x faster, double the speed of Numo/Narray. This is for the largest
problem size, however for the second largest tested, Bohrium.rb was actually 43.4x faster
than the STL and Numo/Narray only 16.6x faster. At the moment however, Bohrium.rb is
still fairly new and not at all feature-complete compared to Numo/Narray. Bohrium.rb does
support all the expected methods that you could need in a linear algebra setting, but Numo/-
Narray has a lot of utility methods that Bohrium.rb would do well to copy.
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Towards Automatic Program Specification
Using SME Models

Alberte THEGLER ', Mads Ohm LARSEN, Kenneth SKOVHEDE, and Brian VINTER
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Abstract. This paper introduces a method to simplify hardware modeling and verifi-
cation thereof in order for software programmers to, more easily, meet the demands of
the growing embedded device industry. We describe a simple method for transpiling
from the new SME Implementation Language into CSPj; and using formal verifica-
tion to verify properties within the generated program. We present a small example
consisting of a seven segment display clock network and introduce how to verify the
widths of the channels in the network.

Keywords. CSP,;, SME, transpiling

Introduction

The Internet of Things, computerized medical implants, and the omnipresent growth in
robotics, brings with them an increased demand for programmers to develop software for
those devices. While this observation may not in itself appear to present a new challenge,
many other areas have previously presented a need for more programmers. The new chal-
lenge is that these new growth areas are all focused on small size, low power consumption,
and high reliability. This means that traditional software engineering methods, and thus tra-
ditionally trained programmers, are often not sufficiently qualified to develop these technolo-
gies. In previous decades such systems have been developed by electronic engineers that ap-
ply far more rigid development approaches. Especially for hardware solutions like VLSI? and
FPGA?3, correctness has always been favored over productivity. While tools have obviously
improved and methods refined, the VLSI process is still mostly the same as presented in [1].
The primary workflow from [1] is shown in Figure 1; note the focus on verification in each
step.

While the VLSI community is fundamentally following this 1980’s design approach,
more high-level tools and abstractions have been introduced. Philippe et al. [2] show a work-
flow (reproduced in Figure 2) where the important part is the verification that has been partly
automated by basing the development on a formal specification of the solution.

There is no denying that the subjectively slow and rigid development process in the VLSI
world [3] is highly successful in producing correct and reliable circuits. At the same time,
conventional software development is highly focused on productivity and time-to-market,
for example, smartphone applications are often developed for continuous release, where bug
patches and new features are rolled out daily. This is of course not possible with hardware.

!Corresponding  Author: Alberte Thegler, Blegdamsvej 17, 2100 Copenhagen OE. E-mail:
tpqb587@alumni.ku.dk.

2Very-large-scale integration.

3Field-Programmable Gate Array.
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Figure 1. VLSI process workflow.
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Figure 2. Reproduced workflow from Philippe et al. [2].

Thus, the authors argue that there is a growing chasm between the way most program-
mers are trained and the competencies that are needed to support the growth in mission criti-
cal embedded devices.

In this work, we propose a tool to help bridge the gap between available programmer pro-
files and the required competencies for embedded devices. Our approach is based on building
a specification from a software implementation and test-suite observations. The overarching
goal is to reach a level where a conventional software programmer can write a solution in
Synchronous Message Exchange (SME) [4,5], and develop a conventional test suite in the
software engineering tradition. By combining the implementation with the observed values
of internal states in an SME based system implementation, we can produce a formal speci-
fication of the system. This specification can be fed into a formal verification tool and thus
improve the correctness guarantees from only what is covered by the individual test vectors
to the entire space that is spawned by the set of test vectors. We approach the task by tran-
spiling4 the new SME Implementation Language (SMEIL) [6] for SME into CSP,, [7] and
verify the formal properties of this version with a tool like FDR4 [8].

This paper builds on the SME model, which have been covered in papers [4,5,9]. In this
paper we only include a brief description of the elements required to understand the setup
we have developed, and encourage readers to seek out more information in the mentioned
papers.

*Source-to-source compile.
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1. Background
1.1. Synchronous Message Exchange

SMEIL is based on the SME model and therefore we give a brief introduction to SME.

SME was first introduced in 2014 and after several iterations [4,5,9] now presents as a
programming model, a simulation library, and VHDL code generators [10]. The original idea
was conceived following an attempt to create hardware descriptions from a vector processor
model, modeled in PyCSP [11], a Communicating Sequential Processes (CSP) [12] library
for Python. After this attempt, it became clear that the structure of CSP was poorly suited
for modeling clocked systems, and therefore it was decided to create the SME model, based
on the CSP algebra. The idea was to only use the subset of the CSP algebra that provided
beneficial functionality to hardware modeling which, most importantly, meant that external
choice was omitted. However, the shared-nothing property of CSP showed to be very useful,
since the network state could only be changed by process communication.

In SME, a network is a combination of processes that are connected through buses. The
processes communicate through a collection of signals in a bus, instead of CSP’s synchronous
rendezvous model, but retains the shared-nothing trait of CSP. SME uses the term bus instead
of channel to enforce the semantic correlation between the SME bus and a physical hardware
signal bus. The process communication is handled by a hidden clock which eliminates the
complexity that arose from adding synchronicity to a CSP network. The combination of the
hidden clock and the synchronous message passing between processes means that the SME
model provides hardware-like signal propagation.

An SME clock cycle consists of three phases: it reads, executes, and writes as can be
seen in Figure 3. The process is activated on the rising clock edge where it reads from the
bus and it reads, executes and writes to the bus in one clock cycle. Just before the rising edge
of the clock, all signals are propagated on all buses which means, that all communication
happens simultaneously. Because of this structure, if a value is written by a process in cycle
1, it is read by the receiving process in cycle ¢ + 1.

SME is able to detect read/write conflicts where multiple writes are performed to a single
bus within the same clock cycle as well as reads from a signal that has not been written to in
the previous clock-cycle.

Since SME is based on CSP, all SME models have a corresponding CSP model, and because

—

)

Read

—_—

\

)
Execute

l
Write

L |

Figure 3. SME process flow for one clock cycle.

of this property, we are able to create a transpiler translating SME models to CSP,,;. The
SME model is currently implemented as libraries for the general-purpose languages C# [9],
C++ [13], and Python [14]. The Python and C# libraries both have code generators for VHDL
as well.
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proc addone (in inbus)
bus outbus {
val: int;

};

outbus.val = inbus.val + 1;

network net() {
instance a of addone(b.outbus);
instance b of ..

Listing 1. Small example of process and network syntax in SMEIL.
1.2. SMEIL

With the different SME implementations, a need arose for a common intermediate language.
SMEIL was developed as a Domain Specific Language (DSL) for SME, usable both as an IL
and as an independent implementation language. It has a C-like syntax with a type system that
makes hardware modeling simple. In spite of its simplicity, SMEIL still provides hardware-
specific functionality that is more difficult to create with general-purpose languages. Often
when modeling hardware in Hardware Description Languages (HDLs) like VHDL or Ver-
ilog, code for testing and verifying are often written in the same language as the design itself.
Unfortunately, the HDLs often does not have the functionality for generating proper simula-
tion input. Using general-purpose languages for testing hardware models are useful since the
range of available libraries are much larger. Therefore the SMEIL simulator provides a simple
language-independent API which enables SME implementations written for general-purpose
languages to communicate with SME networks written in SMEIL, so-called co-simulation.

The two fundamental components of an SMEIL program is process and network. The
process consists of variable and bus definitions, as well as the statements that are evaluated
once for each clock cycle. The purpose of the network declaration is to define the relations
between each entity in the program. A small example of process and network syntax can be
seen in Listing 1.

There are several different ways to use SMEIL, one being co-simulation as described
above. However, in this work, we focus on the independent SMEIL representation and thus
we only present examples in pure SMEIL. These pure SMEIL programs must contain a pro-
cess which generates input for the network since the network cannot receive input elsewhere.
The program is simulated using the command line tool. Simulation is done in order to test
the design of the system.

During the simulation, ranges for all observed values are captured so the observed values
and types can be used to constrain the original defined types and ranges. This property is
of great value when translating into CSP,,;, and when creating assertions, since we can use
these values to actually assert the network. The number of clock cycles, that the simulation
is run for, is specified by the programmer via the command line tool. If the simulation is
not passing through enough clock cycles, the verification might be inadequate. Since the
verification builds on the observed values, the simulation needs to be long enough such that
the whole possible range of input values is exhausted.

In Figure 4 the SMEIL transpiler structure can be seen.
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2. Seven Segment Display Clock in SMEIL

In order to explain how we can transpile programs from SMEIL to CSP,,, we have designed
an example using a seven segment display clock. In this section, the seven segment display
example will be explained as well as the SMEIL implementation of the network.

A seven segment display is an electronic display device which is used in displays such as
digital clocks or other types of devices that display numerals. An example of a typical digital
clock display can be seen in Figure 5. When a digit has been determined for a seven segment
display, it is encoded to a bitstream that represents the digit in the correctly activated display
segments. In this example, we wish to model a typical digital clock that is able to calculate

Figure 5. Digital clock with six seven segment displays, displaying 12:34:56.

and display the current time in hours, minutes, and seconds. Listing 2 shows this example
written in Python. When creating this model in SMEIL some input must be added to the
network, just like time_since midnight in Listing 2. The input value represents seconds
since midnight, and in order to calculate hours, minutes, and seconds we model three different
processes, called the time processes in this example.

When writing hardware models in pure SMEIL, the only way to generate input for the
network is to create a data generator process. This process, called the clock process in our
example, is instantiated with the start time and is incremented by 1 for each simulation cycle,
representing a one second increase. The result is communicated on the process output bus,
where the three time processes are listening. These time processes receive the number and
by the use of simple integer arithmetic, calculate the hours, minutes, and seconds since mid-
night respectively. It is obvious that at some point in time, each time process will calculate
a two-digit result, for example at 12 hours or 42 seconds. However, a single seven segment
display can only show one digit between 0 and 9. Therefore we need two seven segment
displays for each time process in order to show the correct time in a 24-hour interval. Each
time process has an output bus with two individual channels that represent the communica-
tion to each different display. The number representing either hours, minutes, or seconds are
separated into first and second digit, by | {5 | and (x mod 10). These six different results are
then communicated onto the six different channels which represent the six different seven
segment displays. The outline of this network can be seen in Figure 6.

In Figure 6 the network consists of four processes, the data generator process, I, which
creates the input that is broadcasted out on the network. The three time processes, hours (H),
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from math import floor

def time(time_since_midnight):
hours floor(time_since_midnight / 3600)
minutes = floor((time_since_midnight - hours * 3600) / 60)
seconds = time_since_midnight - hours * 3600 - minutes * 60

return [hours, minutes, seconds]

print(time( 57100)) # => 15:51:40
print(time( 3601)) # => 01:00:01
print(time( 66666)) # => 18:31:06

Listing 2. A Python implementation of the seven segment display example.

—
—_

(D<=
()=

Figure 6. SMEIL network for a seven segment display clock. Each SMEIL process is represented by a cicle
with a letter corresponding to the processes Input, Hours, Minutes and Seconds respectively.

minutes (M), and seconds (S) are the processes described above, which calculate each part of
the current time. The outputs are communicated on the six outgoing channels.
The full SMEIL code for this example can be seen in Listing 7 in the appendix.

3. Supporting Technologies
3.1. FDR4

We not only want to transpile SMEIL to CSP,,;, we also want to be able to verify different
properties in CSP,, in order to prove correctness. Today, there exists several tools for formal
verification, both in academia and in the industry. One of the currently most favored tools is
the Failures-Divergences Refinement tool (FDR4). This tool is a CSP refinement checker that
can analyze programs written in the machine-readable version of CSP; CSP,,. It provides a
parallel refinement-checking engine that can scale up linearly with the number of cores. This
means that it can handle processes with a large number of states in a reasonable time. FDR4
can handle several different types of assertions, deadlocks being the most used. However, due
to the structure of SMEIL, we use FDR4 in a different way than is typical. Since the SME
model cannot have cyclic-wait we have no need to verify the system in this manner.

For our current implementation of the transpiler, we can assert the ranges of the channel
inputs, for example, we can automatically assert that the observed ranges, provided by the
SMEIL simulation, and the possible input on the CSP;, channels are not conflicting. In hard-
ware, we would typically want to verify that the communication on a bus does not exceed a
certain range or that the sum of multiple signals does not exceed a specific value. A bus might
be able to carry other data than needed, and being able to model a circuit that can assert that
the bus never carries other data than expected, is of great value.
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CSP was not initially developed for hardware modeling, and therefore it is not evident
how to handle the clock cycle, which is an essential part of hardware modeling. When we
transpile the SME network into CSP,; the SMEIL simulation have provided the ranges of
all values from the simulation and therefore all clock cycles. This means that when FDR4
asserts a property it asserts on all possible communication combinations for all the simulated
clock cycles. Therefore, even though we are transpiling from an SME model, where the clock
is crucial, we can simply translate “one-to-one” from the SMEIL program and still get an
accurate assertion on the properties.

3.2. Transpiling SMEIL to CSP ),

When transpiling from SMEIL to CSP,, one of the difficult components was to find a gener-
alized method for transpiling, that could be generalized to most problems. We have worked
on separation of concerns in order to simplify, but also have a greater chance of being able to
match more SMEIL programs.

An SMEIL process consists of bus and variable declarations, the statements to be run
per clock cycle as well as the outgoing communication from the process. Channels within
an SMEIL bus can be translated directly to CSP,; channels. It is, however, important to
give channel names that will be unique since a CSP,; channel is global as opposed to the
local channel within each SMEIL bus. An example of an SMEIL process, where the process
structure is evident, can be seen in Listing 3 and the corresponding CSP,, code in Listing 4.

In order to keep the outwards communication and the arithmetic statements together
within each process in CSP,;, we generate CSP;, processes with a 1let within statement.
The arithmetic statements go into the let section and the communications go into the within
section. This gives us the possibility of separating the outwards communication and arith-
metic statements while still keeping them within the same CSP,; process. In Listing 4, an
example of the 1et within statement can be seen in lines 7-14. This structure will work as
a general translation structure from SMEIL processes to CSP,; processes.

The network in an SMEIL program is the crucial part which ties all the processes and
communication together. We can standardize the network generation by creating a two-step
communication part. Instead of having the actual processes receive the incoming data, they
receive the data by their process parameter. The process parameter is then set by the network
process which receives the communication from the channels and provides the process with
the communicated value. This ensures that we can generate the processes easily without
having to traverse the network in the SMEIL program beforehand to find out which channel
provides input for which process. An example of this is shown in Listing 8 in the appendix
on lines 61 to 66.

4. Seven Segment Display Clock Transpiling
In the following we use a classic hardware design to illustrate each of the steps in the tran-

spiling, and how the types, constraints, and assertions are carried from the original SMEIL
program into the CSP,; program.

Figure 7. SME to CSP), transpiler.
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We wish to model the network presented in Section 2 in SMEIL in order to transpile it
to CSP,, so that we may verify properties in FDR4. In Figure 7 the workflow of this system
can be seen.

Even though SME buses can contain a series of channels, every single channel is trans-
lated into a CSP,; channel. The properties we will assert with FDR4, are the width of the
CSP,, channels. That is, we want to prove that certain values will never be communicated
on certain channels. It is easy to imagine that 4 bits can be communicated between the time
processes and the seven segment displays. But 4 bits can represent the numbers 0 through
15, and our seven segment displays can only display the numbers O through 9. Therefore we
wish to assert that even though the channels can carry 4 bits, the actual communication on
the six output channels does not exceed 9. In general, the displays will be able to display 0
through 9, but since the example is a clock showing a 24-hour interval, the displays will of
course not be able to show minutes and seconds above 59 and hours above 23.

We know that a program in pure SMEIL must have a data generation process, but this is
not the case in a CSP network. Since we are only transpiling from pure SMEIL networks, we
can be certain that there will always be a process which just contributes an initial value to the
rest of the network. We also know that a process must either have communication in or out
or both. Therefore, we can assume that all SMEIL processes with no input bus will be a data
generator process of some kind, and therefore must have some outwards communication. So
when transpiling to CSP,,, we do not translate the SMEIL process to a CSP,, process, but
simply create a CSP,, channel that represents the values communicated out of this SMEIL
process.

We assume that the SMEIL programs we transpile only contains channels with types
and range annotations. During the simulation, the type will be restricted to the lowest repre-
sentation possible. For example, if a channel was originally set to be int (unbounded), but
the observed values from the simulation show that it could be changed to an i8 (signed 8-bit
integer with a range of -128 to 127), then the simulated output would be 18.

When creating channels in CSP,;, we need to define its range of possible values. If a
channel is only defined by having the integer type, FDR4 would try to verify for all possi-
ble integers, which results in a seemingly unbounded runtime. As explained in Section 1.2,
all simulated SMEIL programs will include the observed range and restricted types for all
channels and variables. The types represent the observed width of the channels in bits, and
by calculating the possible range from these types, we can create the corresponding channels
in CSP,,, and thereby avoid having a seemingly endless runtime in FDR4.

Since the assertion we wish to make is to verify the widths of the channels, it might seem
redundant to create CSP), channels with a limited range. FDR4 would always only check the
values in the defined channel range and therefore there is no point in asserting if the values
go beyond this range. After simulating the SME network, SMEIL provides us with both a
type and a range of observed values. The type is used to create the CSP,; channel range and
the observed values are used for the assertion. The type will always represent equal or more
values than the range of observed values, and by using these values the assertions becomes
valuable.

When it comes to transpiling the data generator process into a CSP,,; channel, we also
use the types of the SMEIL simulation to define it. We use this instead of the observed values
because we cannot guarantee the precise input values of the system. If we used the observed
values, the assertions will pass every time, since it will test the values already used to generate
the rest of the observed values.

An example of simulated SMEIL code can be seen in Listing 3. Notice on lines 2 and
3 that the two channels are defined both with a type u3 and u4 and with a range O to 5 and
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proc seconds (in seconds_in)
bus seconds_out {first_digit: u3 range 0 to 5;
second_digit: u4 range O to 9;};
var seconds: u6 range 1 to 59;
var seconds_first_temp: u3 range O to 5;
var seconds_second_temp: ué4 range 0 to 9;

{
seconds = seconds_in.val 7 60;
seconds_first_temp = seconds / 10;
seconds_second_temp = seconds 7 10;
seconds_out.first_digit = seconds_first_temp;
seconds_out.second_digit = seconds_second_temp;
}

Listing 3. Example of the seconds process from the SMEIL seven segment display example.
See full example in Listing 7 in the appendix.

channel seconds_out_first_digit : {0..7%}
channel seconds_out_second_digit : {0..15}

Seconds (seconds_in) =

let
seconds = seconds_in % 60
seconds_first_temp = seconds / 10
seconds_second_temp = seconds 7 10

within
seconds_out_first_digit ! seconds_first_temp —>
seconds_out_second_digit ! seconds_second_temp ->
SKIP

Listing 4. Example of the Seconds process from the generated CSP,; code in the seven
segment display example. See full example in Listing 8 in the appendix.

0 to 9. These are the observed types and value ranges the simulation tracked for the specific
channel. In order to create the CSP,,; channels based on the types, we need to convert u3 and
u4 into its corresponding range, which for u3 is 0 through 7 and for u4 is O through 15. In
Listing 4 on lines 1 and 2, the calculated ranges are used to define the CSP,, channels.

When creating the assertions, we decided to create separate assert functions to keep the
code structure clean. We know that for each CSP;; channel there must be an assertion, except
for the input channel. Consequently, we create a monitor process for each channel and its only
job is to listen in on the channel communication and assert the values communicated there.
The monitor process is a process that we add specifically for asserting legal communication
values in FDR4 and it does not affect the original SME network. In Figure 8 the outline of
this kind of structure can be seen and we expect that this structure can be used for several
different types of problems and thereby ensure a cleaner code structure.

The monitor process asserts the observed values of the CSP), channels and in Listing 5
the two monitor processes for the Seconds time process can be seen. The values used for
these statements are the observed values from the SMEIL simulation, as can be seen at the
end of lines 2 and 3 in Listing 3. In Listing 5 the ranges are used to assert that the only values
communicated on the channels are within 0 and 5, and 0 and 9 respectively.

After translating the SMEIL processes and creating the monitor processes, we need to
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L]
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Figure 8. The monitor process M listens in on the communication between P and Q in order to assert the
communicated values.

Seconds_out_first_digit_monitor(c) =

c ?7x -> 1if 0 <= x and x <= 5 then SKIP else STOP
Seconds_out_second_digit_monitor(c) =

c ?7x ->1if 0 <= x and x <= 9 then SKIP else STOP

Listing 5. Example of the Seconds monitor processes from the generated CSP,, code in the
seven segment display example. See full example in Listing 8 in the appendix.

create the network described in the last part of the SMEIL program, see lines 53 to 59 in
Listing 7 in the appendix. We wish only to assert the values the time processes are com-
municating to the monitor processes, and therefore we have to synchronize these processes
into a single network in CSP,,. We create three network processes, one for each part of the
network, and we create a nested synchronization, in order to have all monitor processes syn-
chronized with the time process. An example of this network can be seen in on lines 61 to 66
in Listing 8 in the appendix. This network process is also the process that receives the input
from the input channel. By not adding the receiving communication in the time processes,
we avoid having to specify the name of the input channels before creating the network which
simplifies the translation, as described in Section 3.2. In SMEIL, this information is part of
the network section, and therefore it fits well within this part of the CSP,, code.

After creating the network we add the actual assert function calls. For these kinds of
assertions, where we want to check a range, the best solution is to assert that the network
processes behave as the SKIP process. This is done by having the monitor process running
the SKIP process if the value is within the range and the STOP process if not. Two examples
can be seen in lines 2 and 4 in Listing 5. We assert this by using the FDR4 failures model on
the the SKIP process along with hiding communication events, which can be seen in lines 68,
78 and 88 in Listing 8 in the appendix.

The different parts of transpiling the seven segment display example have been pre-
sented and in Figure 9 the corresponding network of the CSP,,; system is presented. The
corresponding network in CSP;, consists of 12 different processes, all created so that not
only the network is simulated correctly, but also so the assertions we wish to make, are in
place. The input is represented by a triangle, since it transpiles from an SME process to a
CSP,, channel. Each of the dotted squares represents the network of synchronizations for
each time processes, which in itself is a process in CSP,,. For each network, we have the
time processes and two monitor processes, for example, H, My, and My, .

In order to show that the verification is accurate, the example in Listing 6 contains an
error that results in FDR4 failing the verification. In Listing 6 the example is only able to han-
dle an input that is below 24 hours. This is because the calculation in the Hours process does
not handle the wrap around at the 24" hour. This means that if the input represents more than
24 hours, the assertions will fail in FDR4 because one seven segment display suddenly has
to display two digits instead of one. An example of such could be the input 131071, which
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Figure 9. A seven segment display clock network in CSP,,. I represents the input channel. Npoyrs, Nininutes
and Ngeconds represent the network processes with H, M and S as the time processes. The results from the
time processes are communicated to the displays. The displays are represented by a square since they are
not actual CSP,; processes. Each display communication also has a monitor process which assert the legal
communication values.

represents 36 hours, 24 minutes and 31 seconds, or 1 day, 12 hours, 24 minutes and 31 sec-
onds. When trying to assert the code from Listing 6 in FDR4, the assertion fails. The coun-
terexample shows that the number 3 is communicated on hours_out_first_digit, which
is not allowed according to the monitor process on lines 12 and 13 in Listing 6.

This example of failure shows how verifying the solution with a tool like FDR4 actually
catches errors that the programmer might have overseen. In this case, the error is simply
corrected by adding % 24 on the end of line 9 in Listing 6 and can be seen corrected in
Listing 8 in the appendix at line 15. Now when we try to assert the example in FDR4, it
passes. By using modulo on the result, we ensure that we still get the accurate time of day,
no matter how many full days the input represents.

The full SMEIL and CSP,, code for the seven segment display example can be seen in
Listing 7 and in Listing 8 in the appendix.
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channel clock_out_val : {0..131071%}

channel hours_out_first_digit : {0..3}
channel hours_out_second_digit : {0..153}

Hours (hours_in) =
let
hours = hours_in / 3600

Hours_out_first_digit_monitor(c) =

c ?7x —> 1if 0 <= x and x <= 2 then SKIP else STOP
Hours_out_second_digit_monitor(c) =

c ?7x —>1if 0 <= x and x <= 9 then SKIP else STOP

Listing 6. Example of an erroneous version of the Hours process from the CSP,; seven
segment display example seen in Listing 7 and in Listing 8 in the appendix.

5. Future Work

With this work, we have taken a small step towards creating a simpler method for software
developers to model hardware as well as verify properties within this model. In future work,
we would like to extend this to software-hardware co-design, with which we would be able
to assert deadlocks.

It would be desirable to be able to automatically create a human-readable report on the
ranges and communications that are used within the system. This could become a standard ad-
dition to the documentation of the system, which would give a programmer an easy overview
of a complicated system and would also allow for easier contemplation over the system.

Another, more complex idea for future work, is to implement support for multi-channel
invariants. This is not something that can easily be simulated and therefore it would require
some work, but it would provide the ability to express more complex assertions.

6. Conclusions

We have presented a transpiler that transpiles SME intermediate language (SMEIL) into
CSP,, for then to use the Failure-Divergences Refinement tool (FDR4) to assert properties in
a CSP,, network. We provide a simple approach that makes it more accessible for software
programmers to program hardware and thereby bridging a gap between software program-
mers and the needs of the industry. Instead of having to create advanced test-benches, our
tool provides a simple way to verify the hardware model via FDR4s assertion functionalities.
We can assert that the observed values of a channel, in a simulated SMEIL program, are in
fact the only possible values communicated on that specific channel. We have also shown this
to work in an example case of a seven segment display.
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Full SMEIL and CSP,,code

proc clock ()

}

bus clock_out {val: ul7 range 1 to 86401;};
var i: ul7 = 0 range O to 86401;

i=1i+1;
clock_out.val = i;

proc hours (in hours_in)

}

bus hours_out {first_digit: u2 range 0 to 2;
second_digit: u4 range O to 9;};

var hours: ub range O to 23;

var hours_first_temp: u2 range 0 to 2;

var hours_second_temp: u4 range O to 9;

hours = hours_in.val / 3600 % 24;
hours_first_temp = hours / 10;
hours_second_temp = hours 7 10;
hours_out.first_digit = hours_first_temp;
hours_out.second_digit = hours_second_temp;

proc minutes (in minutes_in)

bus minutes_out {first_digit: u3 range O to 5;
second_digit: u4 range 0 to 9;};

var minutes: u6 range O to 59;

var minutes_first_temp: u3 range O to 5;

var minutes_second_temp: u4 range 0 to 9;

minutes = minutes_in.val / 60 % 60;
minutes_first_temp = minutes / 10;
minutes_second_temp = minutes 7 10;
minutes_out.first_digit = minutes_first_temp;
minutes_out.second_digit = minutes_second_temp;

proc seconds (in seconds_in)

}

bus seconds_out {first_digit: u3 range 0 to 5;
second_digit: u4 range 0 to 9;};

var seconds: u6 range O to 59;

var seconds_first_temp: u3 range O to 5;

var seconds_second_temp: u4 range 0 to 9;

seconds = seconds_in.val % 60;
seconds_first_temp = seconds / 10;
seconds_second_temp = seconds 7 10;
seconds_out.first_digit = seconds_first_temp;
seconds_out.second_digit = seconds_second_temp;

network clock_network ()

{

instance g of clock();
instance h of hours(g.clock_out);
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ance m of minutes(g.clock_out);
ance s of seconds(g.clock_out);
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Listing 7. The full SMEIL code used for transpiling in the seven segment display example.

channel

channel
channel

channel
channel

channel
channel

Hours (ho
let
hour
hour
hour
within

clock_out_val : {0..131071}

hours_out_first_digit : {0..3}
hours_out_second_digit : {0..15}

minutes_out_first_digit : {0..7}
minutes_out_second_digit : {0..15%}

seconds_out_first_digit : {0..7}
seconds_out_second_digit : {0..15%}

urs_in) =

s = hours_in / 3600 % 24
s_first_temp = hours / 10
s_second_temp = hours 7, 10

hours_out_first_digit ! hours_first_temp ->
hours_out_second_digit ! hours_second_temp ->

SKIP

Hours_out_first_digit_monitor(c) =

c?

x -> if 0 <= x and x <= 2 then SKIP else STOP

Hours_out_second_digit_monitor(c) =

c 7

Minutes(
let

x -> if 0 <= x and x <= 9 then SKIP else STOP

minutes_in) =

minutes = minutes_in / 60 % 60
minutes_first_temp = minutes / 10
minutes_second_temp = minutes 7 10

within

minutes_out_first_digit ! minutes_first_temp >
minutes_out_second_digit ! minutes_second_temp ->

SKIP

Minutes_
c 7

Minutes_
c 7

Seconds (
let

out_first_digit_monitor(c) =
x —> if 0 <= x and x <= 5 then SKIP else STOP
out_second_digit_monitor(c) =
x —> if 0 <= x and x <= 9 then SKIP else STOP

seconds_in) =

seconds = seconds_in % 60
seconds_first_temp = seconds / 10
seconds_second_temp = seconds 7 10

within

seconds_out_first_digit ! seconds_first_temp ->
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54
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60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
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seconds_out_second_digit ! seconds_second_temp ->
SKIP

Seconds_out_first_digit_monitor(c) =

c ?7x —>1if 0 <= x and x <= 5 then SKIP else STOP
Seconds_out_second_digit_monitor(c) =

c ?7x ->1if 0 <= x and x <= 9 then SKIP else STOP

N_hours = clock_out_val 7 variable ->
(Hours(variable)
[| {| hours_out_first_digitl|} ]
Hours_out_first_digit_monitor (hours_out_first_digit))
[ {| hours_out_second_digit|} |]
Hours_out_second_digit_monitor (hours_out_second_digit)

assert SKIP [F= N_hours \ Events

N_minutes = clock_out_val 7 variable ->
(Minutes(variable)
[| {| minutes_out_first_digit|} |]
Minutes_out_first_digit_monitor (minutes_out_first_digit))
[| {| minutes_out_second_digit|} |]
Minutes_out_second_digit_monitor (minutes_out_second_digit)

assert SKIP [F= N_minutes \ Events

N_seconds = clock_out_val 7 variable ->
(Seconds(variable)
[l {| seconds_out_first_digit|} |]
Seconds_out_first_digit_monitor(seconds_out_first_digit))
[| {| seconds_out_second_digit|} |]
Seconds_out_second_digit_monitor(seconds_out_second_digit)

assert SKIP [F= N_seconds \ Events

Listing 8. The full CSP,; code after transpiling the seven segment display example, as seen

in Listing 7 in the appendix.
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