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Abstract

Abstract

Exceptions can occur in all software, however, to be reliable, a program should be able
to handle it. Exception handling has been formalised in Communicating Sequential Pro-
cesses (CSP). Before doing this, the basics of channels has been investigated, and a super-
visor paradigm has been created. Channels are discussed as communication events which
are monitored by this supervisor process. The supervisor process is also used to formalise
poison and retire events. Exception handling and checkpointing are used as means of re-
covering from an error. The supervisor process is central to checkpointing and recovery as
well.

Five different kinds of exception handling is discussed: fail-stop, retire-like fail-stop,
broadcast, message replay, and checkpointing. Fail-stop and retire-like fail-stop works like
poison and retire, when a process enters an exception state. Checkpointing works by telling
the supervisor process to roll back both participants in a communication event, to a state
immediately after their last successful communication. These exception patterns, as well as
implicit retirement, was implemented in PyCSP.

In addition to this thesis, a paper was submitted and accepted to Communicating Process
Architectures 2012, a conference on concurrent and parallel programming.

Resumé

Fejl kan opstå i al slags software, men pålidelige programmer skal kunne håndtere disse.
Fejlhåndtering er blevet formaliseret i Communicating Sequential Processes (CSP). For at
gøre dette, blev de grundlæggende kanaler undersøgt og et vejlederparadigme blev lavet.
Kanaler bliver diskuteret som kommunikationshændelser, som bliver overvåget af denne
vejlederproces. Vejlederprocesen bliver også brugt til at formalisere forgiftnings- og pensio-
neringshændelser. Fejlhåndtering og checkpointing bliver brugt til at komme tilbage efter en
fejl. Vejlederprocesen er vital for checkpointing og tilbagerulning.

Fem forskellige slags fejlhåndtering bliver diskuteret: fail-stop, retire-like fail-stop, broad-
cast, message replay og checkpointing. Fail-stop og retire-like fail-stop virker som forgiftning
og pensionering, når en proces går i en fejltilstand. Checkpointing virker ved at fortælle
vejlederprocesen at denne skal rulle alle deltagere i en kommunikationshændelse tilbage til
en tilstand lige efter deres sidste succesfulde kommunikation. Disse fejlhåndteringsmetoder,
og implisit pensionering, er blevet implementeret i PyCSP.

Ud over dette speciale er der også blevet udarbejdet en artikel, som er blevet optaget
på Communicating Process Architectures 2012, en konference om sideløbende- og parallel-
programering.
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Glossary of Symbols

Notation Meaning

αP the alphabet of process P

αc the set of messages communicable on channel c

a→ P prefixing, a then P

P; Q P (successfully) followed by Q

P || Q P parallel with Q

P ||| Q P interleaved with Q

a→ P | b→ Q choice, a respectively b followed by P respectively Q

P 2 Q deterministic choice, P or Q

P uQ non-detministic choice, P or Q

c!x output or send x on channel c

c?x input or receive x on channel c

(x : A→ P(x)) choice of x from A then P(x)

P ∆ Q P interruptible by Q

� catastrophe

P �̂ Q P, but on catastrophe Q

P Θerror Q P, but on event from error Q

c© checkpoint event

r© roll back event

V



Chapter 1

Introduction

Exceptions can occur in any type of software, however reliable software should be able to
handle these exceptions. Most programming languages offers an exception handling mechan-
ism, in order for the programmer to specify what to do in case of an exception. These exception
handling mechanisms are usually known as throw and catch. The first is a mechanism to trans-
fer control, it is known as raise, or throw. The exception is said to be raised or thrown. The
second mechanism, catch, is where control gets transferred to. An exception can be caught and
the flow can continue.

Communicating Sequential Processes (CSP) is a formal language to describe concurrent
systems. The first paper on CSP was published in 1978 [Hoa78] and it has evolved ever since.
The sequential part of CSP is something of a misnomer, since CSP can handle both sequential as
well as parallel processes today.

CSP is used to describe a network of communicating processes. A process is composed of
two things, namely events and primitive processes. The primitive processes are fundamental
behaviour, such as the deadlock process STOP and the successful termination process SKIP.
Events is the simplest construct for interaction and communication. Two parallel CSP processes
capable of engaging in an event, must do so together, or in CSP terms, synchronised. A subclass
of events are communication events. These have to be synchronised as well, but the two processes
in question have got each their end of the communication. One process can input and the
other receive the output. We say that these two processes are communicating via a channel,
however channels are not limited to two communicating processes. Construction of channels
with capability of handling communication between more than two processes are discussed in
chapter 3.

Channels can be used to communicate between processes, however when a channel is not
needed any more, it should be shut down. Some implementations of CSP has a poison construct
[BW03, SA05] which can be used to safely terminate a network. Poison is discussed in chapter
4. Poisons less aggressive brother, retirement, is discussed in chapter 5.

Exception handling in concurrent systems are not as easy as throw and catch. Internally,
in a single process in a network, this could be the case, however across multiple processes
something else is needed. An exception handling mechanism for CSP are discussed in chapter
6.

Since 1978 CSP has been the basis for several programming languages. Some programming
languages are directly based of of CSP, languages like Go and occam, however CSP is also the
basis for many libraries for already renowned programming languages, such as JCSP for Java

1



CHAPTER 1. INTRODUCTION 2

[WM00], C++CSP2 for C++ [BW03, Bro07], CHP for Haskell [Bro08], and PyCSP for Python
[BVA07]. This thesis will focus on the implementation in PyCSP, however a discussion of these
programming languages and libraries is present in chapter 7.

In this thesis I will investigate how exception handling can be introduced in the CSP algebra
as well as an implementation like PyCSP. PyCSP builds heavily upon the notion that it should
be easy to create a concurrent network, get the network up and running, and equally as easy
to get the data out of the network. Keeping this in mind, exception handling should be easy
to use as well, with no big overhead in means of programming time. Examples of how to use
these exceptions and the handling thereof will be shown in chapter 8.

In addition to this thesis, a paper (appendix A) was submitted and accepted to Communic-
ating Process Architectures 2012, a conference on concurrent and parallel programming.



Chapter 2

Motivation

Almost every programming language has an exception handling mechanism built into the lan-
guage. These are usually new scopes, where the exception will be thrown from. Exceptions can
be caught in the same level scope, or be propagated up, until it is caught. If it is not caught in the
programmers code, it will usually hit the interpreter or operating systems exception handling
mechanism, where it will be handled. Hoares CSP [Hoa85] did not have an internal exception op-
erator, however it did have the catastrophe event � , which should be seen as an external entity
causing a catastrophe for a process. Roscoe adds upon Hoares catastrophe [Ros10], and creates
a throw operator, which works much like our programmatic try-catch statements. That said,
Roscoes throw operator is only internal, which means that each process needs to know how to
handle each type of error, or else it will deadlock. PyCSP, and CSP in general, are missing a
mechanism, which is able to propagate the exception between processes, maybe even letting
another process handle it.

PyCSP strives to be an easy to learn and easy to use CSP-like programming library [FVB10,
VBF09]. This is because the intended users of PyCSP is not computer-scientists or expert pro-
grammers, but rather all kinds of scientists. General scientists cannot be excepted to learn CSP,
which is why PyCSP should be as easy to use as Python. Any new constructs should be equally
as easy to use, as the rest of PyCSP. Of course the programmers should not create error prone
software, but PyCSP should be able to handle errors if they occur.

Without proper exception handling a lot of work could be lost to run-time errors, especially
in the field of science. A simple Monte Carlo Pi method could run for a very long time, before
encountering an error. As the Monte Carlo Pi method only returns back, once it has found an
approximation for π, all of the work will be lost, if it encounters an error. This is also true for
exception handling with a standard try-catch mechanism.

The CSP exception handling mechanism should take this into account. It should be able
to roll back to a last known, working, configuration. To do this, a process needs to be able
to tell other processes, that it has failed, rolling them back to their last working configuration
as well. Hoare describes an internal checkpointing mechanism as well as how to roll back for
restartable processes. This can be used to checkpoint each process on their own.

A process in an exception state should have several options on how to proceed. Normally
a programmer will state what will happen in a catch scope in the respective programming
language. However with a CSP network we have some other options. A network could be
poisoned, a process could be retired or, as mentioned above, a process could be rolled back.
Internally a process could still catch the exceptions and respond in their own manner.

3
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In order to talk about poison, retirement and exception handling in formal CSP, we need to
first have an understanding of the basics of channels. This is the topic for the next chapter.



Chapter 3

Basics

In this section I will explore the basics of communication with CSP algebra [Hoa85].
Four different kind of channel types exists: one-to-one, one-to-any, any-to-one, and any-to-

any. These four types are very much alike, however only one-to-one are part of “Core CSP” as
defined by Hoare [Hoa85]. The rest has to be built with the use of the interleaving operator.

In the following section i, j, n, m are all elements of N, and 1..n will be used as a shorthand
for the set {1, 2, . . . , n}.

3.1 One-to-One Channels

A one-to-one channel is simply a channel with one writer and one reader. This is exactly what
we have in the algebra as a communication event as seen in equation (3.1). Figure 3.1 shows
this communication visually.

P = c!x → P′

Q = c?x → Q′(x)

O2O = P ||Q
(3.1)

P Q
c

Figure 3.1: One-to-one channel

3.2 Any-to-One Channels

The any-to-one channel has any amount n of writers, but only one reader. This can be modelled
with the algebra as many writers interleaving on a communication event. The reader and one
of the writers must be ready to communicate in any order. This is shown visually in figure 3.2
and the CSP algebra in equation (3.2).

Pi = c!x → P′i
Q = c?x → Q′(x)

A2O =

(
|||

i∈1..n
Pi

)
||Q

(3.2)

5



CHAPTER 3. BASICS 6

P1

P2

Pn

Q
c

Figure 3.2: Any-to-one channel

To see that this is correct, we set n = 2. A2O will then be equal to:

A2O = (P1 ||| P2) ||Q (3.3)

If we insert P1, P2 and Q, we can see that only one P will be able to send to Q. By using
Hoares L6 law, about interleaving, we get:

A2O =
( (

c!x → P′1
)
|||
(
c!y→ P′2

) )
||
(
c?x → Q′(x)

)

=
(

c!x →
(

P′1 ||| (c!y→ P′2)
) 2 (c!y→ ((c!x → P′1) ||| P′2)

))
|| (c?x → Q′(x))

(3.4)

The choice is on c!x and c!y together with c?x from Q, therefore either c!x or c!y will happen.
Afterwards, if Q is still willing to accept communication via c, the other communication can
take place, as the rest of P′1 and P′2 is interleaved with the rest of Q′(x).

3.3 One-to-Any Channels

The one-to-any channel type is equivalent to that of the any-to-one, but with the readers and
writers reversed. Here we have one writer and many interleaving readers as shown in figure
3.3 and equation (3.5).

P = c!x → P′

Qj = c?x → Q′j(x)

O2 A = P ||
(
|||

j∈1..m
Qj

) (3.5)

P

Q1

Q2

Qm

c

Figure 3.3: One-to-any channel
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3.4 Any-to-Any Channels

The last channel type is the any-to-any channel. Many writers and many readers are able to
communicate all at once. This takes the many part from both of the above and combines them
as shown in figure 3.4 and equation (3.6).

Pi = c!x → P′i
Qj = c?x → Q′j(x)

A2 A =

(
|||

i∈1..n
Pi

)
||
(
|||

j∈1..m
Qj

) (3.6)

P1

P2

Pn

Q1

Q2

Qm

c

Figure 3.4: Any-to-any channel

One of the Pi writers get to write to the channel and of the Qj readers get to read.
To show this works as it should, we set n = 2 and m = 2. This means we have P1 interleaved

with P2 parallel with Q1 interleaved with Q2. Following the same example as with the any-to-
one channel, we get:

P1 = c!x → P′1
P2 = c!y→ P′2

Q1 = c?x → Q′1(x)

Q2 = c?x → Q′2(x)

A2 A =
(

P1 ||| P2

)
||
(

Q1 |||Q2

)

(3.7)

Here P1 ||| P2 will work just like in the any-to-one example above, which ends with a choice
of either c!x or c!y. Q1 |||Q2 however, will be different, as they both receive on channel c.

(
Q1 |||Q2

)
=
(

c?x → Q′1(x)
)
|||
(

c?x → Q′2(x)
)

=
(

c?x →
(
Q′1(x) |||Q2

) 2 c?x →
(
Q1 |||Q′2(x)

))

= c?x →
((

Q′1(x) |||Q2
)
u
(
Q1 |||Q′2(x)

))
(3.8)

That is, x is being received on channel c and then an internal choice between Q′1(x) and
Q′2(x) are being made. We cannot know which process has received the message, before that
process reacts, therefore the internal choice.

Note that if n = 1 and m = 1, all we have left is:
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P1 = c!x → P′1
Q1 = c?x → Q′1(x)

O2O =

(
|||

i∈1..n
Pi

)
||
(
|||

j∈1..m
Qj

)

= P1 ||Q1

(3.9)

This is identical to that of the one-to-one channel. Having either n = 1 or m = 1 gives us
one-to-any and any-to-one channels respectively.

3.5 Buffered Channels

Before we go beyond the basics, a small discussion of the channels that have been made is in
order. There are no need to extend Hoares CSP with additional channels, as it has just been
shown that they can be made purely with interleaving processes.

In JCSP each of the four types are implemented individually, while PyCSP only have any-
to-any channels. As I have just shown, an one-to-one channel is simply an any-to-any channel,
with only one reader and one writer. PyCSP do not need these extra channels.

A writing process will always have to wait for the reading process to read, before it itself
can continue. However, with buffered channels, the writing process can just pass the message
along, and continue. This is true, because a buffering channel will behave as a buffering process
which only job is to read on one channel and write on another.

In the following equation is a small network with a buffering process for channel c. This
network is shown in figure 3.5.

P = c!x → P′

Q = c!x → Q′

R = B()

where

B() = c?x → B(x)

B(x)_s =
(

c?y→ B(x)_s_(y) 2 c′!x → Bs

)

S = c′?x → S′(x)

T = c′?x → T′(x)

BUF =
(

P |||Q
)
|| R ||

(
S ||| T

)

(3.10)

P

Q

R

S

T

c

Figure 3.5: A network with a buffered channel c
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Here P and Q sends their input to channel c as usual, however it is not S or T which receives
at first. An intermediate process R is synchronising on this communicating, in place of S.
This process either receives from its left or sends on its right, maintaining a list of messages
received, but not yet sent. Interleaving the communication events will ensure the messages to
be delivered in correct order, even on buffered channels.

3.5.1 Creating Buffered Any-to-any Channels Without Interleaving

Without the interleaving construct, we could still have an any-to-any-like channel. A bunch of
channels would be needed, instead of just one. Each n writers and m readers would have to
have a channel connected to each other, giving us a total of nm channels. This net of channels
can be seen in figure 3.7.

P1

P2

Pn

Q1

Q2

Qm

c11

cnm

Figure 3.6: Any-to-any channels without interleaving

The algebra for such a network would be quite different from what we have seen until now.

Pi = ~
j∈1..m

(cij!x → P′i ) ∀i ∈ 1..n

Qj = ~
i∈1..n

(cij?x → Q′j(x)) ∀j ∈ 1..m

AltNet =
(
||

i∈1..n
Pi

)
||
(
||

j∈1..m
Qj

)
(3.11)

Here every process Pi is ready to write on all of ci1 to cim channels, which is determined by
a choice. Likewise, every process Qj is ready to read from the c1j to cnj channels. Note that all
these processes are run in parallel.

Buffering each of these channels, would allow the messages to be reordered, thereby not
going from e.g. P1 to Q1 in the same order they were sent. However, a giant buffering process
can be inserted the same way as figure 3.5. Since all communication now runs through this
one buffering process, half of the channels are moved to the other side of it, having n channels
going into it, and m channels leaving it.

This network might not seem that bad, however, if we try to write a PyCSP program without
using any-to-any channels, as these cannot exists without interleaving, we would end up with
something along the lines of listing 3.1. Note that each of these channels are in fact any-to-any
channels, but are only used as one-to-one.

Here we create the producer, a consumer and 10 workers. For this we need 20 channels.
One going from the producer to each of the 10 workers, and one going from each of the 10
workers to the consumer. None of these channels are buffered, as that would complicate things
even more.
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P1

P2

Pn

B

Q1

Q2

Qm

c1

cn

c′1

c′m

Figure 3.7: Any-to-any channels without interleaving, with a buffering process

We do an AltSelect on each of the channels that the producer uses, to pass the job to
the first worker who is ready. The consumer also does an AltSelect to see which worker it
needs to get a job from. This is similar to the what we saw in equation (3.11). In PyCSP we
have any-to-any channels, which I have shown can be used like any-to-one and one-to-any if
only one process is using one end.

In listing 3.2 the same network as before are simulated again, but this time we allow for
any-to-any channels and therefore only use two channels, instead of 20.

In both listing 3.1 and 3.2 I have used a construct called retire. This construct will be
described in the following section, but first we need to take a look at another, similar, con-
struct, namely the poison construct. When we understand poison, we can easily modify it
to retire.
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from pycsp.threads import *
2

NUM_PROCESSES = 10
4

@process
6 def producer(cout):

for i in range(1, 30):
8 _ = AltSelect(*[OutputGuard(co, msg=i) for co in cout])

10 for i in range(NUM_PROCESSES):
retire(cout[i])

12
@process

14 def worker(cin, cout):
while True:

16 x = cin()
cout(x*2)

18
@process

20 def consumer(cin):
while cin:

22 try:
ch_end, x = AltSelect(*[InputGuard(ci) for ci in cin])

24 print x
except ChannelRetireException:

26 if ch_end in cin:
cin.remove(ch_end)

28
producerCr, producerCw, consumerCr, consumerCw = [], [], [], []

30
for i in range(NUM_PROCESSES):

32 pc = Channel()
producerCr.append(+pc)

34 producerCw.append(-pc)

36 cc = Channel()
consumerCr.append(+cc)

38 consumerCw.append(-cc)

40 Parallel(
producer(producerCw),

42 consumer(consumerCr),
*[worker(producerCr[i], consumerCw[i]) for i in range(NUM_PROCESSES)]

44 )

Listing 3.1: A simple network with only one-to-one channels
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from pycsp.threads import *
2

NUM_PROCESSES = 10
4

@process
6 def producer(cout):

for i in range(1, 30):
8 cout(i)

retire(cout)
10

@process
12 def worker(cin, cout):

while True:
14 x = cin()

cout(x*2)
16

@process
18 def consumer(cin):

while True:
20 x = cin()

print x
22

producerC = Channel()
24 consumerC = Channel()

26 Parallel(
producer(-producerC),

28 NUM_PROCESSES * worker(+producerC, -consumerC),
consumer(+consumerC)

30 )

Listing 3.2: A simple network with any-to-any channels



Chapter 4

Poison

To poison a network is to provide a safe termination of said network [BW03, SA05]. This is done
by injecting poison into the network, and having the processes propagate this poison through-
out the network. In PyCSP a poisoned channel throws an exception when other processes tries
to communicate with it, thus poisoning other processes.

No one has shown how channels in PyCSP work with formal CSP. In the previous chapter I
showed how channels could be modelled. This should be the same for all implementations of
CSP. In this section I will show how poison is handled in PyCSP using formal CSP. It is possible
that other implementations have their own, and different, way of enabling poison in a network.

To model a network capable of being poisoned, a supervisor process is introduced. This
supervisor is listening to all the communications over a channel, be it one-to-one or any-to-any.
As the communication has to be synchronised, the supervisor process can disallow communic-
ation, by not engaging in the communication event.

Thus, allowing processes to poison the channel via a cpid event, we can model a poisonable
one-to-one channel like:

P =
(
c!x → P′

) 2 (cpoison → Pp
)

Q =
(
c?x → Q′(x)

) 2 (cpoison → Qp
)

Sok = (d : {c.m | m ∈ αc})→ Sok

)
2
(
~
id

cpid → Se

)

Se = cpoison → Se 2 SKIP

(4.1)

Note that no two other processes can have the same cpid as that would mean that they had to
agree on poisoning the c channel. Pp and Qp are two processes that poisons all of P respectively
Q’s channels.

Pp = ||
c∈αP

cpid → SKIP (4.2)

Se is a process which will only engage in a poison event or terminate together with the rest
of the network. Figure 4.1 shows how these processes interact.

To create a poisonable-network P, Q, and Sok process should be run in parallel.

POISON = P || Q || Sok (4.3)

13
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P Q

Sok

c

cpid

Figure 4.1: Poison on one-to-one channel

As already mentioned the network is poisoned by Sok acting on an event cpid . Sok will
become Se which will only interact on the event cpoison or SKIP, in the latter case, it will just
terminate. The cpoison event will in turn let P and Q become Pp and Qp. It will also deem the
channel c unusable, as the c channel is in the alphabet of Se.

This one-to-one algebra of poison in equation (4.1) can easily be extended to any-to-any
channels, which we will see in the next section.

4.1 Combining Any-to-any Channels and Poison

Poison works on more than just one-to-one channels, in fact it works on any-to-any channels.
In this section I will show how it can be extended to these channels. As described earlier, the
other types can be derived from any-to-any channels by setting either n = 1 or m = 1 or
both, so showing that poison works on any-to-any channels, we should be able to derive them
working for both any-to-one and one-to-any channel types.

With any-to-any channels we have n writers (P1 . . . Pn) and m readers (Q1 . . . Qm). These all
need to be able to communicate, but the any-to-any channel should support poisoning, so a
supervisor process will again overlook the channel c over which they communicate.

The Sok and Se processes are the same, as they only concern the channel.

Pi =
(
c!x → P′i

) 2 (cpoison → Ppi )

Qj =
(
c?x → Q′i(x)

) 2 (cpoison → Qpj)
(4.4)

P1

P2

Pn

Q1

Q2

Qm

Sok

c

cpid

Figure 4.2: Poison on any-to-any channel

To create a poisonable-network we need to let all of Pi and Qj interleave. As before Sok

should be run in parallel with these:
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POISONA2 A =

(
|||

i∈1..n
Pi

)
||
(
|||

j∈1..m
Qj

)
|| Sok (4.5)

And again, having n = 1 and m = 1 gives us

POISONO2O = P1 || Q1 || Sok (4.6)

4.2 Outsider Poison

Let’s look at the one-to-one poison network. If a process M, which neither reads nor writes on
a channel, has a cpid in it’s alphabet, it is possible for M to poison that network, without being
poisoned itself. This is not an error, but a feature of how the algebra works.

In listing 4.1 is an example of how this openness can be used in PyCSP.

from pycsp_import import *
2 import random

4 @process
def producer(cout):

6 for i in [1,2,3,4,5]:
cout(i)

8
@process

10 def worker(cin):
try:

12 while True:
print cin()

14 except ChannelPoisonException:
pass

16
@process

18 def poisoner(cin):
while True:

20 if random.choice([True, False]):
poison(+cin)

22 break

24 c = Channel()

26 Parallel(
producer(-c),

28 worker(+c),
poisoner(c)

30 )

Listing 4.1: Showing the openness of poison

The process poisoner never reads nor writes to the channel c, however, it can poison it,
because it knows of c. The notion of outsider poison can be used to poison a network without
interfering with the reader and writer counters, which are used by retirement.

The next chapter will show how retirement can used in place of poison.



Chapter 5

Retirement

5.1 Consequences of Using Poison

Using poison can have some unforeseen consequences. The main consequence is that we can
poison a channel before we actually mean to. This can be seen in listing 5.1 where a producer-
worker-consumer network is setup.

from pycsp_import import *
2

@process
4 def producer(cout):

for i in range(1, 6):
6 cout(i)

poison(cout)
8

@process
10 def worker(cin, cout):

while True:
12 result = cin() * 2

cout(result)
14

@process
16 def consumer(cin):

while True:
18 print cin()

20 c = Channel()
d = Channel()

22
Parallel(

24 producer(-c),
3 * worker(+c, -d),

26 consumer(+d)
)

Listing 5.1: Poisons used with unforeseen consequences

Here the producer creates five jobs, to be taken care of by the three workers. The workers
finish their job, multiplying by two, and pass along the result to a consumer. When the produ-
cer has produced all five jobs, it poisons the channel. This results in the workers being poisoned
possibly before all jobs have been done, and, because a poisoned process will propagate this
poison to all of its channels, the consumer might be poisoned before it has finished receiving
and printing all the results.

With retirement [VBF09], this scenario would be quite different. In PyCSP we have a reader
and a writer counter. When a process retires a channel, the channels read or write counter, de-

16
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pending on which end is being retired, is decreased. If either counter reaches zero, the channel
is fully retired. This means that instead of the first poison causing the channel to be poisoned,
with retirement, the last retire will cause the channel to be retired.

Listing 5.2 shows how easily poison can be swapped for retire in listing 5.1.

from pycsp_import import *
2

@process
4 def producer(cout):

for i in range(1,6):
6 cout(i)

retire(cout) # poison swapped for retire
8

@process
10 def worker(cin, cout):

while True:
12 result = cin() * 2

cout(result)
14

@process
16 def consumer(cin):

while True:
18 print cin()

20 c = Channel()
d = Channel()

22
Parallel(

24 producer(-c),
3 * worker(+c, -d),

26 consumer(+d)
)

Listing 5.2: Retirement is the way to go

As the producer is the only writer on the c channel this is retired, once all jobs have been
produced. When a worker tries to read from the retired channel, they will themselves retire
their channels. As the d channel has three workers writing to it, this will not be retired before
the last worker is done.

5.2 Retirement in the Algebra

When modelling retirement the initial processes for Pi and Qi, from equation (3.6), are the same.

Pi =
(
c!x → P′i

) 2 (cretire → Pp
)

Qj =
(

c?x → Q′j(x)
)
2 (cretire → Qp

) (5.1)

The supervisor’s Se process is also the same, as it should tell all processes with channel c
that all processes are retired.

The Sok process needs to be altered to incorporate retirement. Here we give two new events,
crwid and crrid , to retire either a writer or a reader. As it is up to the programmer to make sure
that a process P no longer writes or reads from c after it has retired, the supervisor only needs
to know how many of each are subscribing to the channel in the first place.
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Sok(n, m) = if (n = 0 or m = 0)

Se

else

((d : {c.me | me ∈ αc})→ Sok (n, m))

~ (crwid → Sok(n− 1, m)
)

~ (crrid → Sok(n, m− 1)
)

end

Se = cretire → Se 2 SKIP

(5.2)

Again each of the crrid and crwid events should be unique for each processes, as multiple of
these means that the processes need to agree on synchronisation. When either all of the readers
or writers have left a channel, it will be fully retired. This means that a process cannot input on
a channel after all the readers are retired and likewise the readers cannot get output.

All the Pi and Qj should be interleaving as usual, but this time, the supervisor needs to
know how many of them there are.

RETIREA2 A =

(
|||

i∈1..n
Pi

)
||
(
|||

j∈1..m
Qj

)
|| Sok(n, m) (5.3)

If both n = 1 and m = 1 we have the same scenario as with poison. If either a reader or
writer retires, it retires the system as one of the counters will be zero. If only one of n or m is 1,
the system will be retired once every channel to that one is retired.

5.3 Openness of Retirement

As with poison, there is an openness in retirement. A process, which is neither a reader nor a
writer, can retire a channel if wanted.

This was not a problem with poison, as the entire network would just shut down, but with
retire this posses some different questions.

• What happens if an outsider-process retires for a reader or a writer?

– The original process would still continue, but a channel will have been retired, and
some messages would not be passed

• Should this be permitted or should the openness be closed?

The openness is generally not a problem, as the programmer decides how many processes
are subscribing to a channel, when creating the initial parallelisation. If four processes are
communicating on channel c, two readers and two writers, the programmer will state that Sok

has four spots for retirement, two for each reading and writing. Only these four processes are
given the right to retire, on this channel. If more processes were given the right to retire on this
channel, more retirement spots were given to begin with.

In PyCSP this is not a problem either because of the way the processes and retire is
implemented. When a channel is prompted for a channel-end, the respectively channel counter
is increased, be it a reader or a writer. This is the same in the algebra, as saying that a process
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has the channel in it’s alphabet. That means that a process cannot know of a channel, and retire
from it, unless it has already been accounted for.

We could have n and m from equation (5.3) be the number of processes with a crwid re-
spectively crrid in their alphabet instead of just being the number of processes the programmer
chooses. If we create a channel-end in PyCSP and just throw it away, we can’t retire the channel,
because not all readers or writers are retired.

This is similar to

P = SKIP crwid ∈ αP

in the algebra.
As for the second concern, whether or not it should be closed: it should not be closed, as

this is entirely up to the programmer of the network, to ensure that the processes behave in a
correct manner.

5.4 Implicit Retirement

With retirement being the standard way of terminating a network, implicit retirement could be
a great thing to explore. In PyCSP we have processes that work until poisoned or retired. This
can be viewed in listing 5.3 and in the algebra it can be modelled as a recursive process which
listens for a retire

W = (c?x →W) 2 (cretire → SKIP) (5.4)

@process
2 def worker(cin, cout):

try:
4 while True:

x = cin() # Get the input, throw it away
6 except ChannelRetireException:

pass

Listing 5.3: A PyCSP worker process

If this process is neither poisoned or retired, it will work forever. However, the process
producing work for this worker process (5.4) could not want to retire, but terminate instead,
leaving the worker waiting forever.

P = c!x → SKIP (5.5)

Again a PyCSP example is given in listing 5.4.

@process
2 def producer(cout, x):

cout(x)

Listing 5.4: A PyCSP producer process

With these two processes run in parallel P || W, the network will never terminate, as the
worker will never stop waiting for more data. Letting the producer retire the cout channel
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will solve this problem, however, if we use implicit retiring, and let the environment retire the
channel, all channels will be retired automatically once their processes terminates. We can have
implicit retirement in the algebra, by mimicking the function-decorator from PyCSP. If we have
a wrapper I in the algebra, all processes that want to use implicit retirement, should be passed
through that. The wrapper could be modelled simply as:

I(P) = P; Pr (5.6)

where Pr is the process that retires all the channels of P. Now the parallel I(P) || W will
terminate, because once finished the wrapper I will retire the channels of P.

This wrapper has been implemented in PyCSP in section 7.2.



Chapter 6

Formalising Exception Handling

Exceptions can occur in any type of software, however reliable software should be able to
handle these exceptions. G. H. Hilderink describes an exception handling mechanism for a
CSP library for Java, called “Communicating Thread for Java” (CTJ) [Hil05a], however this is
not formalised for CSP, but rather just shown to work with the current Java implementation.

Hilderink discussed two models: the resumption model, where the exception handler cor-
rects the exception and returns; and the termination model, where the exception handler cleans
up and terminates.

He also proposes a notation for describing the exception handling in CSP algebra, using ~∆
as an exception operator [Hil05b].

P = Q ~∆ EH (6.1)

Here the process P behaves like Q, unless there is an exception, then it behaves like EH. EH
in this case will only collect the exceptions, and not act upon them.

In this section I will try to formalise a exception handling mechanism, by weaving it into
the already established supervisor paradigm.

6.1 What is an Exception?

A process that suddenly behaves as STOP is often an undesirable behaviour, which we would
like a way to escape from. This is where exception handling comes in action.

To understand how an exception handling mechanism works, we first need to know what
an exception, or exception state, is.

A process is in an exception state if part of it has caused an error and cannot terminate. This
could be a division-by-zero error, failure in hardware, or another type of error. The process can-
not continue after being in an exception state, and therefore behaves like the deadlock process
STOP, however with an exception handling mechanism, we can interrupt the failed process,
and perhaps either fix and resume; or clean up and terminate the process correctly.

A second important thing we need to understand is when the exception handling mechan-
ism should step in. Hilderink proposes that this is done when another process tries to commu-
nicate with the failed process. This is very similar to both poison and retire, where a process
is poisoned if it tries to read from or write to a poisoned channel, and it will fit together nicely
with the supervisor paradigm, that I have used for both poison and retire. In a real-life example
we want a CSP-like programming language, like PyCSP, to handle some exceptions internally,

21
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using the language’s built-in exception handling, but in some cases we want other processes to
be aware that a process has failed.

A last important thing is that a process in an exception state, will not be able to release its
channels, which means that the rest of the network cannot terminate correctly. The exception
handler must therefore also be responsible for releasing the channels of the process. Different
ways to shut down the network in a clean manner is discussed in section 6.3.

6.1.1 The Exception Handling Operator

As already mentioned Hilderink proposes using ~∆ as an exception operator, however CSP
already offers an interrupt operator: ∆ [Hoa85, RHB97].

P ∆ Q

This process behaves as P but is interrupted on the first occurrence of an event of Q. P is
never resumed afterwards. It is assumed that the initial event of Q is not in the alphabet of P.
Hoare describes a disaster from outside a process, as a catastrophe [Hoa85] and denotes this
with a lightning bolt � /∈ αP. A process that behaves as P up until a catastrophe and then
behaves as Q is defined by:

P �̂ Q = P ∆ ( � → Q) (6.2)

Roscoe continues Hoares idea of a catastrophe, and creates a throw operator Θ for internal
errors [Ros10].

P Θx:A Q(x) (6.3)

Here P is interrupted by a named event x from A. Hilderink and Roscoes two operators are
very similar, in the way that they interrupt the current flow of a process, and hands the control
over to another process.

With the throw operator we have a way of talking about exceptions. Exceptions is simply
an event x from A which occurs when a process P enters an exception state. As mentioned
above, this could be a division-by-zero error or similar. As proposed by Hilderink, this event
should occur instead of communication on a channel belonging to a process in an exception
state. When it occurs this way, we can treat it as a communication event.

In a real-life example we could have multiple processes running on multiple machines.
Having the exception as a communication event means that we can transfer it from one ma-
chine to another, thereby propagating the exception throughout the network letting the right
process handle the exception.

6.2 Exceptions and the Supervisor

Using the same paradigm as with poison and retirement, the supervisor paradigm, the excep-
tion handling mechanism can be incorporated into a network. We want the exception handler
to catch all exception, with which it can decide what to do. The alphabet error should there-
fore contain all errors. In this section Θ will be used as a short hand for Θerror, when it is not
necessary to denote the error-alphabet.
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Here it is shown for a network utilising the any-to-any channel, but of course it works for
the other types of channel, by setting either the amount of writers or readers, or both, to one.
A writer and reader process could be expressed as Pi and Qj

Pi = (c!x → P′i ) Θ Pei

Qj = (c?x → Q′j(x)) Θ Qej

(6.4)

Note, that to simplify the algebra, the poison- and retirement capabilities are not present
here. The Pei and Qej processes could be telling the supervisor that the process in hand is in an
exception state.

Pei = cei → SKIP

Qej = cej → SKIP
(6.5)

However, they could also be used to correct the problem at hand; or try and then only tell
the supervisor if they failed.

Depending on which of the exception patterns, discussed in the following sections, one
chooses, the supervisor processes will have to be adapted to this. The Se process could try
to commend the problem, poison the rest of the network, or it might even have an exception
handler of its own, which it could tell. Again, as with both poison and retire, the cei has to be
unique for that process, else multiple processes would have to agree on the error state.

With this handling of exceptions we can explore different ways of shutting down the net-
work.

6.3 Exception Patterns

In sequential programs an exception is usually an escape from the current scope to another
scope, where the exception can be handled. However, when working with concurrent pro-
grams, exceptions should be able to work across processes and across channels.

In this section I will look into several ways exceptions and exception handlers could exist
in concurrent processes. The exceptions are always “triggered” by the next process reading or
writing to a channel, that the process in an exception state is subscribing to. This is the same
way both poison and retirement works in PyCSP.

6.3.1 Fail-stop

The first way of working with exceptions, is one I will call fail-stop.
When a process enters an exception state, it stops and all data previously sent to it will have

been lost. An example could be a producer, sending jobs to workers. One worker enters an
exception state, and the job it was granted will have been lost, without the chance of recovery.

If another process tries to communicate with the failed one, or indeed on the same channel,
the exception should propagate though the network, until the entire network is in an excep-
tion state. This is effectively the same as the process in the exception state poisoning all of its
channels.

In listing 6.1 an implementation of a small producer and worker network is shown. The
workers job is to take 1/x for every x passed by the producer. Of course 1/0 is undefined, so the
network fails.
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from pycsp_import import *
2

@process
4 def producer(cout):

for i in range(-2, 3):
6 cout(i)

8 @process
def worker(cin, cout):

10 while True:
x = cin()

12 cout(1.0/x)

14 @process
def consumer(cin):

16 while True:
print cin()

18
c = Channel()

20 d = Channel()

22 Parallel(
producer(-c),

24 2 * worker(+c, -d),
consumer(+d)

26 )
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Listing 6.1: Fail-stop in PyCSP

P

W1

W2

C
c d

Θ poisons its channels

Figure 6.1: Fail-stop in worker process

Figure 6.1 shows the fail-stop network from listing 6.1. The supervisor processes, which
is not shown in the figure, will have to behave much like the one we saw with poisoning in
equation (4.1), where all other processes are poisoned.

In PyCSP we have a central object, where each process are created. This central object has
a run-method, which is surrounded by a try-catch block. When we reach the division-by-zero,
this try-catch block catches the error, runs through the process channels, and fail-stops each of
them, thereby shutting down the network in a proper manner. This is the same way poison
and retirement works.

On one hand, using this kind of exception pattern, we are able to terminate a network when
one process is in an exception state. This can be useful, if it doesn’t make sense to continue after
a failure. On the other hand, we are not able to actually handle the exception. Handling the
exception could prove important, it could be one easily handled, where it makes sense to try
again, but with this pattern that is not possible.

6.3.2 Retire-like Fail-stop

The next type of exception pattern is one I will call retire-like fail-stop. While fail-stop resembles
poison, this pattern instead mimics retire.
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P

W1

W2

C
c d

Θ retires its channels

Figure 6.2: Retire-like fail-stop in one worker process

The information sent to the process that are in an exception state will still be lost, as with
the original fail-stop, however we have the added ability, that the entire network is not shut
down because of one exception. If we have a lot of distributed workers, and one fails because
of e.g. a disk failure, the network will continue, but that one worker, and its job, will be lost.

This is slightly better than fail-stop, however we have no way of handling the one exception,
other than ignoring it.

Both fail-stop and retire-like fail-stop have been implemented in PyCSP in section 7.3.

6.3.3 Broadcast

Looking at the retire-like fail-stop, a broadcast channel could be opened. When a process enters
an exception state, everyone subscribing to the broadcast channel is told so. That is, if the
process in exception is subscribing, the last thing it does is send a message of what went wrong
over the broadcast channel. Pei from equation (6.5) could be rewritten to

Pei = cei → bei → SKIP

to incorporate this broadcast. The broadcast channel could in CSP algebra be modelled as a
broadcast process, like the supervisor process already used for poison and retire.

B

Figure 6.3: Broadcast process

Processes subscribing to the broadcast channel could decide whether or not to act upon the
message, again resolving in the programmer having to make some choices. A process could
be restarted this way, as the process who started the work, which went bad, could subscribe to
this channel.

The job would still be lost, unless there is somewhere to figuring out which job was sent
to the process in the exception state. It is not enough for the producer process to remember
which jobs are sent on which channels, because the channels could be one-to-any channels.
Here the producer would not know who accepted the job, and so does not know which should
be resend.

Another thing worth noting here is the effects which side-effects has. Once a side-effect has
occurred, one cannot just restart the job. If the worker has already sent some of the result to
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another process, it should not be restarted, as this would conflict with the entire result. Other
side-effects include writing to file and communicating with other external entities, such as
terminal, graphics card, and more.

With side-effects and the non-restartable process in mind, lets look at message replay.

6.3.4 Message Replay

In this exception pattern we need to be able to identify a message, as well as who the recipient
of it were. Therefore each message should be wrapped in an object with an id and a recipient.
The recipient of course is not known until the actual recipient has acknowledged the message.

Thus a new way of sending messages should be composed:

• Process A sends a message on an any-to-any channel

• Process B receives a message, sending back an acknowledgement to Process A

• Process A saves the message object with Process B as the recipient

This saved message object can be used later for message replay.
If Process A learns that Process B is in an exception state, the message can be replayed on

the any-to-any channel, for another process to receive. This could be handled invisible to the
outside world.

If the receiving process, Process B, passes on the message, it should tell Process A to forget
about it. In fact, if Process B makes any kind of side-effect, Process A should no longer remem-
ber the message sent, as it is no longer guaranteed that Process B needs the same message to
replay.

A

B

C

( )id ( )id

Figure 6.4: Messages with an id

One could argue that it would be up to Process B to determine whether or not it was still
valid to get the message replay. In turn, it could be up to the developer whether or not it was
okay.

A

B1

B2

Bn

( )id

Θ

( )id

Figure 6.5: Message replay

In figure 6.5 a small network is shown. Here Process B1 goes into an exception state, and
tells the owner of the message, Process A, so. Process A, having saved the message and B1
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as the original recipient, can replay the message to the any-to-any channel once again, hoping
that another process can finish the job.

Modifying the way we think of CSP communication, changing messages into actual object,
might not be a good thing. Instead of having a replayable message, with ids and recipients
attached, we could do checkpointing.

6.3.5 Checkpointing

With roll back checkpoints it is possible for a process in an exception state to roll back to the
last checkpoint, which could either be defined by the programmer, or it could simply be just
after the last communication with another process. That way, all information would be kept
intact, and the process at hand could try the thing that caused it to go into an exception state
again. This could be failed hardware, or another non-deterministic event, which means that it
could succeed the second time around.

A counter could be attached to this form of exception pattern, which means that the process
can only roll back that many times, before actually failing like fail-stop, retire-like fail-stop or
even broadcasting the failure. No side-effects, other than communication, are allowed between
the last checkpoint and the point where the exception occurred, because these are thing that
cannot be rolled back. Communications can be rolled back by propagating the roll back to the
next process in the network. This way, they will “forget” that they had communicated with the
process in exception, and be ready to communicate again.

Checkpoints are quite similar to transactions, as we know them from SQL, in that we do all
the things between two checkpoints, or else we try and roll them back.

With roll back checkpoints the handling of the exception could be invisible for the outside
world, as the roll back could happen without any other process being aware of it. This is
essentially what the exceptions are meant to do, however the roll back method might not be
the best way to go for it.

Remembering that PyCSP should be convenient to use, having the programmer think about
checkpoints and side-effects in their code is not the way to go. Checkpointing needs to be
invisible or almost invisible for the programmer.

Example

Think of the following scenario:

1. Events up to this point

2. Process A communicate with Process B

3. Process B receives and terminates / makes a side-effect

4. Process A goes into an exception state and wants to roll back to 1.

Process A can try to roll back the state to between the second and third item, that is after
the communication between Process A and Process B. It could also try and roll back to the first
item, telling Process B, if it is still alive, to roll back as well. Process B would have to roll back
to just before the communication, so that the communication event can occur again. If Process
B has in fact terminated, Process A should enter an exception state, and possible resolve it with
fail-stop.
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In the algebra, Process B wouldn’t be able to terminate, before every other process was
willing to do so. That is, they would have to synchronise on the SKIP event. Therefore this is
only a problem in the implementation, where we allow processes to terminate when their work
is done.

Checkpointing Algebra

Checkpointing can be modelled in the algebra with the use of a checkpoint event c© [Hoa85] as
well as a roll back event r©. With these, we can define a new process Ch(P) which behaves like
P, but also incorporates checkpoints. We assume that c©, r© /∈ αP. To define Ch(P) we need a
helper Ch2(P, Q) where P is the current process and Q is the most recent checkpoint. As the
initial checkpoint must be the start point, we say that

Ch(P) = Ch2(P, P)

If P = (x : A→ P(x)), then Ch2(P, Q) is defined as

Ch2(P, Q) =
(

x : A→ Ch2(P(x), Q)

| c© → Ch2(P, P)

| r© → Ch(Q, Q)
)

Θ r© → Ch2(Q, Q)

(6.6)

That is, the process P is working as usual, but upon the event c© we save the current P as
our checkpoint. Upon r© or an error, caught by Θ, we continue on Q, which is our checkpoint.

With this checkpointing construct, it is possible to checkpoint an entire network

Ch(P || Q)

However, in practice, this is not what we want. We would much rather like to checkpoint
each individual process

Ch(P) || Ch(Q)

This gives us the advantage that we can roll back each process individually. However, as
already discussed, because of side-effects we cannot safely roll back over a communication.
Therefore, the event c© should happen after every communication. In order to do this, we need
to make a change to equation (6.6) as the checkpoints and roll backs needs to be defined per
communication, and not just one for the entire process:

Ch2(P, Q) =
(

x : A→ Ch2(P(x), Q)

~
c∈αP

( c©c → Ch2(P, P))

~
c∈αP

( r©c → Ch2(Q, Q))
)

Θ ~
c∈αP

r©c → Ch2(Q, Q)

(6.7)

As the supervisor is listening to all communication, the supervisor process from equation
(4.1) can be rewritten to:

Sok =
(

d : {c.me | me ∈ c}
)
→ c©c → Sok

2
(

r©c → Sok

) (6.8)
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That is, after every communication, the supervisors tells all parties of the communication
to make a synchronised checkpoint. Upon an exception, caught by Θ, they will roll themselves
back as this is part of the definition in equation (6.7).

The implementation of checkpointing is discussed in section 7.3.3.



Chapter 7

Implementation

In this chapter I will comment on the implementation of implicit retire and the different excep-
tions patterns discussed in section 6.3. The entire source code is available as a branch on the
original project at Google Code1. The files changed for this thesis can also be found appendix
B in each their respective section.

7.1 CSP and CSP-like Programming Languages

As already discussed, some programming languages, like Go and occam, have their basis in
CSP. Other languages, like Java, C++, Haskell, and Python have CSP libraries. Almost every
programming language has an exception handling mechanism built into the language. Listing
7.1 shows how exception handling is used in Java, C++, Haskell, and Python, which are some
of the programming languages with CSP libraries.

Other CSP programming languages, like Go, do not have exceptions, which are thrown
and caught, build into the language. Go relies on return codes, like C code. In listing 7.2 is
an example of how Go handles the same “division-by-zero” as the other languages discussed.
The division of zero in line 11 creates a Go panic. A deferred function, func() is called after
the return, and indeed after the panic. The error is “caught” in the recover() function, and
checked against nil as this is not only called when a panic is caused, but indeed for every call
to div.

Because occam is so much like CSP, occam does not have any form of error handling. Every
program in occam is a process, and upon run-time error this process, or indeed the entire
network, is shut down. The STOP process and run-time errors are the same for the occam
compiler, which quits the program in question on STOP.

When implementing exception handling in PyCSP, propagating throughout a network, it
should be just as easy for the programmer to see what is going on, as with normal exceptions.

7.2 Implicit Retirement

The original implementation for PyCSP does not offer implicit retirement of processes. As
noted in chapter 5, this could be a great help for the audience of PyCSP.

A process that implicitly retires all of its channels, will demand less code. This will make it
easier for people to grasp the content of the process, not thinking about the algebra.

1http://code.google.com/p/pycsp/source/browse/#svn/branches/ExceptionsPyCSP
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// Java
2 public class Example {

public static void main(String[] args) {
4 try {

System.out.println(1/0);
6 } catch (Exception e) {

System.out.println("Cannot divide by zero");
8 }

}
10 }

// C++
2 #include <iostream>

using namespace std;
4 int main() {

try {
6 cout << 1/0 << "\n"

}
8 catch(char * str) {

cout << "Cannot divide by zero" << "\n";
10 }

}

-- Haskell
2 main = do

result <- try (evaluate (1 ‘div‘ 0)) :: IO (Either SomeException Int)
4 case result of

Left ex -> putStrLn $ "Cannot divide by zero"
6 Right val -> putStrLn $ show val

# Python
2 try:

print 1/0
4 except:

print "Cannot divide by zero"

Listing 7.1: Exception handling in Java, C++, Haskell, and Python

PyCSP already passes on a retirement. This is done in the run() function in the process
implementation, by checking all the arguments and keyword arguments for a process for chan-
nels, retiring all of these, as seen in listing 7.3

The call to self.fn is what is actually running the process. Returning from this, a call
to __check_retire can be made, which will retire all the channels, given as arguments or
keyword arguments as given in listing 7.5. A modified version of run can be seen in listing 7.4.

Channels not given as arguments will not be retired. That is, if we create a dynamic channel
inside the process, this will not get affected by implicit retirement, but then again, it would not
be affected by propagation of poison or retire either.

If one of the channels are already retired, implicit retirement will still try to retire it again.
This will cause the channel to throw a ChannelRetireException however the implement-
ation of __check__retire will catch this and skip the channel, not retiring it twice.

However, if the channel is already poisoned, we should not try and retire it. This will cause
all sorts of errors, so we do not even try. The retire functions in our channel ends have been
modified to skip retiring already poisoned channels. This can be seen in listing 7.6.
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package main
2 import "fmt"

4 func div(x, y int) (z int) {
defer func() {

6 if err := recover(); err != nil {
fmt.Println("Cannot divide by zero")

8 z = 0
}

10 }()
return x / y

12 }

14 func main() {
div(1, 0)

16 }

Listing 7.2: "Exceptions" in Go

# process.py
2 def run(self):

try:
4 # Store the returned value from the process

self.fn(*self.args, **self.kwargs)
6 except ChannelPoisonException, e:

# look for channels and channel ends
8 self.__check_poison(self.args)

self.__check_poison(self.kwargs.values())
10 except ChannelRetireException, e:

# look for channel ends
12 self.__check_retire(self.args)

self.__check_retire(self.kwargs.values())

Listing 7.3: The original run() implementation

# process.py
2 def run(self):

try:
4 # Store the returned value from the process

self.fn(*self.args, **self.kwargs)
6 # The process is done

# It should auto retire all of its channels
8 self.__check_retire(self.args)

self.__check_retire(self.kwargs.values())
10 except ChannelPoisonException, e:

...

Listing 7.4: An run() implementation offering implicit retire

7.3 Exception Patterns

In order to incorporate more than one type of exception pattern, the main @process decorator
was modified. The @process decorator is now able to take optional named arguments. If
this is fail_type, this will be used as the fail-type in the run() function. In the process’s
__init__ function, in listing 7.7, we also check for print_error, retries, and fail_-

type_after_retries. These can be used to print the actual error, set the number of retries
allowed in checkpointing (defaults to 3), and set the fail type to use after these retries. The
@process decorator is given in listing 7.8.

The function allows for both decorators with arguments, an empty argument list, or no
argument list, which means that current PyCSP programs will still run with this new version,
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# process.py
2 def __check_retire(self, args):

for arg in args:
4 try:

if types.ListType == type(arg) or types.TupleType == type(arg):
6 self.__check_retire(arg)

elif types.DictType == type(arg):
8 self.__check_retire(arg.keys())

self.__check_retire(arg.values())
10 elif type(arg.retire) == types.UnboundMethodType:

# Ignore if try to retire an already retired channel end.
12 try:

arg.retire()
14 except ChannelRetireException:

pass
16 except AttributeError:

pass

Listing 7.5: Implementation of __check_retire()

# channelend.py
2 def retire(self):

if not self.isretired and self.channel.status != POISON:
4 self.channel.leave_writer()

self.__call__ = self._retire
6 self.post_write = self._retire

self.isretired = True

Listing 7.6: Skip retirement if already poisoned. This is done for both readers and writers. Only
writer is shown

without changing.

7.3.1 Fail-stop

Fail-stop is implemented in much the same way as poison is in the current PyCSP implementa-
tion. To create fail-stop, I have added a new exception type, equivalent to ChannelPoisonException,
called ChannelFailstopException. The run function has also been altered, and is shown
in listing 7.9.

In this listing is also shown that we catch every exception that a function with the @process
decorator on it will throw. As fail-stop works in the same way as poison, if a process throws
an exception, it is caught by the run function, and handled accordingly. Unlike fail-stop the
programmer is not offered a failstop keyword, to explicitly fail-stop a channel.

Having the fail-stop caught in the run function, does not mean, that you cannot catch it
yourself. Like with both poison and retire, the fail-stop triggers a ChannelFailstopException,
which can be caught in the process receiving a communication event.

7.3.2 Retire-like Fail-stop

While fail-stop is much like poison, retire-like fail-stop is like retire. With retire-like fail-stop,
the network is not dead upon failure. If a process makes an error, we simply retire, instead of
poison, all of its channels.

In listing 7.10 is the run function, but this time, it has both fail-stop and retire-like fail-stop
to worry about. This is done in the last except clause, where we check how we should act
upon failure.
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# process.py
2 def __init__(self, fn, options, *args, **kwargs):

threading.Thread.__init__(self)
4 self.fn = fn

6 self.fail_type = None
if options is not None and ’fail_type’ in options:

8 self.fail_type = options[’fail_type’]

10 self.args = args
self.kwargs = kwargs

12
# Create unique id

14 self.id = str(random.random())+str(time.time())

16 self.options = options
self.vars = {}

18
self.print_error = False

20 if options is not None and ’print_error’ in options:
self.print_error = options[’print_error’]

22
self.max_retries = CHECKPOINT_RETRIES

24 if options is not None and ’retries’ in options:
self.max_retries = options[’retries’]

26
self.retries = 0

28
self.fail_type_after_retries = self.__check_retirelike

30 if options is not None and ’fail_type_after_retries’ in options:
if options[’fail_type_after_retries’] == FAILSTOP:

32 self.fail_type_after_retries = self.__check_failstop

Listing 7.7: Process’s __init__ function is modified to take optional arguments

Again, as with fail-stop, we catch the exception and run the retirelike function on all
channels given as arguments to the process. These will get retired, and will count as retired in
the sense that we can retire other channels in the regular way, and still reach a reader or writer
counter of zero, thereby fully retiring the channel.

7.3.3 Checkpointing

Compared to fail-stop and retire-like fail-stop, checkpointing is a chapter on its own. In order
to checkpoint in PyCSP we need the following:

• A way of loading variables in a process.

• A way of saving variables in a process.

• A way of telling other processes to roll back, once the current one has encountered an
error.

Each of these will have their own subsection and I will then built one atop another and
unite them in the end.

Loading Variables

Loading variables should happen from a previous checkpoint. If we are at the very start of
the process, a checkpoint does not exist. Therefore a method for setting default values to the
variables should be incorporated into the load_variables() function.
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# process.py
2 def process(func=None, **options):

"""
4 @process decorator for creating process functions

6 >>> @process
... def P():

8 ... pass

10 >>> isinstance(P(), Process)
True

12
Processes can have a ’fail_type’.

14 This is checked when failing.

16 >>> @process(fail_type=FAILSTOP)
... def P():

18 ... 1/0
"""

20 if func != None:
def _call(*args, **kwargs):

22 return Process(func, options, *args, **kwargs)
return _call

24 else:
def _func(func):

26 return process(func, **options)
return _func

Listing 7.8: The new @process decorator

# process.py
2 def run(self):

try:
4 ...

except ChannelRetireException, e:
6 # look for channel ends

self.__check_retire(self.args)
8 self.__check_retire(self.kwargs.values())

except ChannelFailstopException:
10 self.__check_failstop(self.args)

self.__check_failstop(self.kwargs.values())
12 except Exception as e:

print e
14 self.__check_failstop(self.args)

self.__check_failstop(self.kwargs.values())

Listing 7.9: The run function with added fail-stop

In listing 7.11 is a PyCSP process, which loads variables and print out the sum.
An intermediate version of load_variables() is given in listing 7.12.
Here we look at all the arguments given to load_variables() and put their value into

an array, in the same order. Each argument must be a tuple or a list of at least two elements.
Ordering is important, which is why we cannot have the beauty in listing 7.13, because Python
doesn’t guarantee the order in hashes.

We can however cheat a bit, if we know we only wish to load a single variable.
With the load function from listing 7.14 we can now load each variable individually with

e.g. load(x = 1) instead of load_variables((’x’, 1)).
The load_variables() from listing 7.12 returns the variables in the same order it was

given. This is not very useful on its own, however, when we actually load the variables from a
checkpoint, it will be.
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# process.py
2 def run(self):

try:
4 ...

except ChannelFailstopException:
6 self.__check_failstop(self.args)

self.__check_failstop(self.kwargs.values())
8 except ChannelRetireLikeFailstopException:

self.__check_retirelike(self.args)
10 self.__check_retirelike(self.kwargs.values())

except Exception as e:
12 print e

fail_type_fn = None
14 if self.fail_type == FAILSTOP:

fail_type_fn = self.__check_failstop
16 elif self.fail_type == RETIRELIKE:

fail_type_fn = self.__check_retirelike
18

if fail_type_fn is not None:
20 fail_type_fn(self.args)

fail_type_fn(self.kwargs.values())

Listing 7.10: run function, with fail-stop and retire-like fail-stop

@process
2 def P():

x, y = load_variables((’x’, 1), (’y’, 2))
4 print x + y # => 3

Listing 7.11: Loading variables and printing the sum

# process.py
2 def load_variables(*pargs):

var = []
4 for __x in pargs:

var.append(__x[1])
6

if len(var) == 1:
8 return var[0]

else:
10 return var

Listing 7.12: First version of load_variables()

To load the variables from a checkpoint, some traceback-manipulation is used. load_-

variables() is a global function, however, only the Process object knows about P()’s
saved variables. As it is always a Process object, which calls the load_variables() func-
tion, we can look up the call stack, and retrieve the Process object. The Process object has
a variable, called vars which we will get back to. This traceback-manipulation in the load_-
variables() function can be seen in listing 7.15.

loaded_vars is a hash which contains all the variables loaded from the Process-object.
We shall see how this is saved in a bit. In listing 7.15 we check if each variable we want to load
is in this hash, or if we should take the default value, given as an argument. Unpacking the
array returned in the process P(), we can see why it works in listing 7.11.

Notice however, that this comes a price of readability and ease of use. We have to declare
our variables “twice” and in a rather peculiar way. Loading variables, we can’t reuse variables,
e.g. for loop counter, as seen in listing 7.16.

Another thing worth noting is a modified way of using the for-loops, which is also shown in
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@process
2 def P():

x, y = load_variables(x = 1, y = 2) # Sadly not possible
4 print x + y # => 3

Listing 7.13: load_variables() with keyword arguments is not possible, due to the order-
ing of arguments

def load(**kwargs):
2 if len(kwargs) > 1:

raise AttributeError
4

for __x, __v in kwargs.iteritems():
6 return load_variables((__x, __v))

Listing 7.14: load implementation

# process.py
2 def load_variables(*pargs):

stack = inspect.stack()
4

try:
6 process_ = stack[3][0].f_locals

finally:
8 del stack

10 loaded_vars = process_[’self’].vars

12 var = []
for __x in pargs:

14 if __x[0] in loaded_vars:
var.append(loaded_vars[__x[0]])

16 else:
var.append(__x[1])

18
if len(var) == 1:

20 return var[0]
else:

22 return var

Listing 7.15: Traceback-manipulation in load_variables()

listing 7.16. As we might want to save the i variable, we cannot have for i in range(-10,

10), as this would mean, that i would be set to -10 at the beginning of the loop. Instead, we
set i before, and update it, so the for-loop now reads for i in range(i, 10). This means
that i is set to itself at the beginning of the loop, and are then counted to 10.

Saving Variables

Before we can load the variables, we need to actually save them, or else, load_variables()
would just return its arguments. As we saw in the algebra for checkpointing, section 6.3.5,
saving the variables is the job of the channel, or at least, it is the supervisors job to make sure
every process checkpoints after each communication. There is no supervisor process in PyCSP,
however the channels are more object-like than in the algebra, so these can easily handle the
checkpointing themselves.

A channel does not know which process it belongs to, which poses a slight problem for
saving variables. Like with load_variables() we can take into account that the channel
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from pycsp_import import *
2

@process
4 def W():

i = load(i = -10))
6 for i in range(i, 10):

print i
8

print "pause"
10

for i in range(i, 10):
12 print i

14 Sequence(W())

16

18

20

22

-10
2 -9

-8
4 -7

-6
6 -5

-4
8 -3

-2
10 -1

0
12 1

2
14 3

4
16 5

6
18 7

8
20 9

pause
22 9

Listing 7.16: Cannot reuse variables

is only ever called inside a process. Again the call stack is brought forward, and we pick
out both the process object and the actual process function, that the programmer has defined.
The process function will have the variables that needs to be saved. The process object has a
variable, vars, which hold a dictionary of variables, the very same that we loaded from in the
previous section.

Listing 7.17 shows the implementation of the save_variables() function. The vars

variable is set to the locals dictionary we pick out of the process-function.

# channel.py
2 def save_variables(self):

stack = inspect.stack()
4

try:
6 locals_ = stack[2][0].f_locals

process_ = stack[3][0].f_locals
8 finally:

del stack
10

process_[’self’].vars = locals_

Listing 7.17: Saving variables in the channel object

For each communication, the processes involved needs to save their variables. In PyCSP
channels are one-way channels. That is, the same end cannot be used for both reading and
writing, because we use channel-ends to determine the count for retirement. Luckily both
types of channel-ends extends a uniform channel. This channel class has the functions for both
reading and writing. After a successful read or write, we need to save all variables, using the
save_variables() function.

Listing 7.18 and 7.19 shows how save_variables() is called after a successful read or
write.
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# channel.py
2 def _read(self):

self.check_termination()
4 req = ChannelReq(ReqStatus(), name = self.name)

self.post_read(req)
6 req.wait()

self.remove_read(req)
8

if req.result == SUCCESS:
10 self.save_variables()

return req.msg
12

self.check_termination()
14

print ’We should not get here in read!!!’, req.status.state
16 return None

Listing 7.18: A read from the channel

# channel.py
2 def _write(self, msg):

self.check_termination()
4 req = ChannelReq(ReqStatus(), msg)

self.post_write(req)
6 req.wait()

self.remove_write(req)
8

if req.result == SUCCESS:
10 self.save_variables()

return
12

self.check_termination()
14

print ’We should not get here in write!!!’, req.status
16 return

Listing 7.19: A write to the channel

Roll back

Now we have the ability to load and save variables. We save the variables after each commu-
nication, between two processes.

When a process in the network fails, the next process sharing a channel with that process
should roll back, instead of their next communication on that channel.

# channel.py
2 def check_termination(self):

if self.status == POISON:
4 raise ChannelPoisonException()

elif self.status == RETIRE:
6 raise ChannelRetireException()

elif self.status == FAILSTOP:
8 raise ChannelFailstopException()

elif self.status == RETIRELIKE:
10 raise ChannelRetireLikeFailstopException()

elif self.status == CHECKPOINT:
12 self.status = NONE

raise ChannelRollBackException()

Listing 7.20: The check_termination implementation

At the beginning and end of every communication, we call check_termination, to see
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whether the channel has been poisoned, retired, fail-stopped, or retire-like fail-stopped. In
listing 7.20 we also check whether the channel is in a checkpoint mode. This status should be
used, when we want a reader or writer to roll back, instead of communication. Like fail-stop
and retire-like fail-stop, we throw an exception, if the channel is in a checkpoint mode. This
exception is caught in the run function in Process, as seen in listing 7.21.

# process.py
2 def run(self):

try:
4 ...

except ChannelRollBackException:
6 # Another process sharing a channel with this one

# has rolled back, so we must as well.
8 self.run()

...

Listing 7.21: run offering to catch ChannelRollBackExceptoin

Unlike poison, retire, fail-stop, retire-like fail-stop, we do not want the roll back to propag-
ate throughout the network. Therefore, we have no __check_rollback() function, like we
have with these others. Instead we just rerun the run function. load_variables will load
the variables from the last checkpoint, when we rerun the process.

The process that fails should set a roll back flag on the channels it uses. This is done when
an arbitrary exception is caught from within the run function. The bottom except can be seen
in listing 7.22.

# process.py
2 def run(self):

try:
4 ...

except Exception as e:
6 if self.print_error:

print e
8

fail_type_fn = None
10 rerun = False

12 if self.fail_type == FAILSTOP:
fail_type_fn = self.__check_failstop

14 elif self.fail_type == RETIRELIKE:
fail_type_fn = self.__check_retirelike

16 elif self.fail_type == CHECKPOINT:
if self.max_retires != -1 and self.retries >= self.max_retires:

18 fail_type_fn = self.fail_type_after_retires
else:

20 rerun = True
fail_type_fn = self.__check_checkpointing

22
if fail_type_fn is not None:

24 fail_type_fn(self.args)
fail_type_fn(self.kwargs.values())

26
if rerun:

28 self.retries += 1
self.run()

Listing 7.22: except in run function

Here we call __check_checkpointing which sets the status of all the channels given in
arguments to CHECKPOINT.
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With this we are able to create processes which can be checkpointed and rolled back.



Chapter 8

Examples

8.1 Implicit Retirement

With implicit retirement, we do not need to retire a process any more, as this is done automat-
ically. This means we are able to write shorter programs, with more precise processes, without
having to think about closing down the network. It is still possible to retire a channel explicitly,
and thereby shutting down a network.

In listing 8.1 two example usage of the implicit retirement is shown. Here we pass along a
string to a waiting process. The waiting process would normally wait for the next string to be
passed, but the do_nothing process automatically retires, because it is done.

from pycsp_import import *
2

@process
4 def do_nothing(cout):

cout("Doing")
6 cout("nothing")

8 @process
def waiting(cin):

10 while True:
x = cin()

12 print x

14 c = Channel()

16 Parallel(
do_nothing(-c),

18 waiting(+c)
)

from pycsp_import import *
2

@process
4 def producer(cout):

while True:
6 cout("Foo")

8 @process
def worker(cin):

10 x = cin()
print x

12
c = Channel()

14
Parallel(

16 producer(-c),
worker(+c)

18 )

Listing 8.1: Implicit retirement

Of course one can still use the try-except pattern, to catch the retirement, and e.g. print
the end result.

8.1.1 Monte Carlo Pi

To show the use of the try-except pattern, a Monte Carlo method for calculating π has been
devised.

The Monte Carlo method is a method of probability. With enough data, we can say some-
thing about the thing we are trying to calculate with probability.

42
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When calculating π it is important to remember what π is. For a circle’s area we have the
simple, and well known formula A = πr2. But this means that π = A

r2 , so all we need to know
is the area of a circle and its radius to calculate π.

If we take a dartboard and a very poor darts player (plays randomly), the number of darts
that hit within the dartboard is proportional to it’s area. In other words

#darts hitting dartboard
#darts hitting circumscribing square

=
area of dartboard

area of circumscribing square

Knowing this, we can calculate π like:

#darts hitting dartboard
#darts hitting circumscribing square

=
πr2

4r2 =
π

4

4
#darts hitting dartboard

#darts hitting circumscribing square
= π

If we want to, we can look at only the first quadrant of our coordinate system. This would
mean that the darts player only hit in the first quadrant.

I will sketch out how this works in several forms:

• Non-concurrent algorithm

• CSP algebra

• PyCSP code example

Non-concurrent algorithm Our darts player hits randomly, but consistently, in the first quad-
rant of the dartboard. With 1 dart, we can estimate π as either 0 or 4 depending whether he hit
the dartboard or not. The more darts he throw, the better estimate of π.

The algorithm is described in algorithm 1.

Algorithm 1 Monte Carlo method algorithm for calculating π

1. hits = 0
2. For 1 to desired number o f iterations

3. x = random, y = random
4. Calculate dist = x2 + y2

5. hits = hits + 1 if dist < 1
6. π ≈ 4 hits

desired number o f iterations

Here random is a random number between 0 and 1.

CSP algebra Looking at the Monte Carlo method with CSP goggles, we need to make it more
parallel. This could be done by having a number of worker processes, doing the sequential
work from before, and then averaging their results in a consumer process.

The producer process could look like:

P(0, _) = SKIP

P(n, m) = (c!(m)→ P(n− 1, m))
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The workers will need to grab the input from P on the c channel. This input should be how
many time we need to randomise and calculate whether it was a hit. We then need to collect
all of these, pass them to the consumer, and go back to being a worker.

Wi =
(
c?m→W ′i (m, m, 0)

)

W ′i (0, n, h) = d!
(

4h
n

)
→Wi

W ′i (m, n, h) = mHits(m)?x →W ′i (m− 1, n, h + x)

The last process that we need to define is the consumer process. This should collect all the
results from all the workers, and, when retired, print this result.

C(h, l) = (d?x → C(h + x, l + 1)) 2 (dretire → print!h→ SKIP)

Running these three processes in parallel, with suitable defaults, will yield an approxima-
tion to π.

Pi =
(
|||

i∈1..30
IWi (Wi)

)
||
(

IP(P(10000, 1000)) ||C(0, 0)
)

(8.1)

Here we start 30 workers and let the producer start 10000 jobs. Each job is an integer, 1000,
for which the worker calculates that many hits. The consumer collects it all and prints π.

Notice that with the use of I, none of the processes has to retire their channels.
To be fair, we also need to run two supervisor processes, in order to handle the c channel

and the d channel. Equation (8.1) should be changed to

Pi =
(
|||

i∈1..30
IWi (Wi)

)
||
(

IP(P(10000, 1000)) ||C(0, 0)
)
|| Sok (1, 30) || Tok (30, 1)

This network is shown in figure 8.1.

W1

W2

W30

P C
c d

S T

Figure 8.1: Monte Carlo Pi network
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PyCSP code example Implicit retirement in PyCSP could be used to achieve briefer code,
with no worries about retirement. In listing 8.2 a Monte Carlo method implementation which
utilises implicit retirement is shown. The producer does not retire explicit, as this is now
handled by PyCSP. The consumer still catches the retirement in order to print the result.

from pycsp_import import *
2 from random import random

4 @process
def producer(cout):

6 for i in range(10000):
cout(1000)

8
@process

10 def worker(cin, cout):
while True:

12 cnt = cin()
sum = reduce(lambda x, y: x + (random()**2 + random()**2 < 1.0),

14 range(cnt)) # Calc dist
cout(4.0 * sum / cnt)

16
@process

18 def consumer(cin):
cnt, sum = 0, 0

20
try:

22 while True:
sum = sum + cin()

24 cnt += 1
except ChannelRetireException:

26 print ’Result:’, sum / cnt
# Upon retirement, we are done and print result

28
jobs = Channel()

30 results = Channel()

32 Parallel(
producer(-jobs),

34 30 * worker(+jobs, -results),
consumer(+results)

36 )

Listing 8.2: Monte Carlo Pi simulation

8.2 Exception Handling

8.2.1 Fail-stop

The implementation of fail-stop is given in section 7.3.1.
In this example, we shall look at an exception. A network is created to calculate 1

x for x
going from −10 to 10. In this series is of course the division 1

0 which is undefined. Python will
throw an ZeroDivisionError exception, and would usually quit, or if caught, follow along
the flow.

With the implementation of fail-stop we will instead transmit the exception via the channel.
The receiving process will throw a ChannelFailstopException once it reads from the dead
channel.

Figure 8.2 shows this network visualised with three worker processes. Listing 8.3 shows the
implementation and output of this network. This contains the producer, three workers, and the
consumer process. The producer communicates the numbers from−10 to 10 one at a time over
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the c channel. The workers sends 1
x on the d channel. Lastly the consumer prints the result. If

the consumer throws the exception, it print a message, saying that it caught an exception.
We see in the output in listing 8.3 that the consumer gets every job from −10 up to 1 before

it quits with the error message. This is because we are not guaranteed the same order of jobs,
when working this way. The float division by zero comes from the implementation of
fail-stop in PyCSP, where we print the exception, when it occurs. This actually comes from the
worker process that dies, because we catch it in the consumer. Had we not caught it, we would
not get the message twice, because we catch the ChannelFailstopException in listing 7.9
on page 35.

W1

W2

W3

P C
c d

Θ throws error

Figure 8.2: Fail-stop network

from pycsp_import import *
2

@process
4 def producer(job_out):

for i in range(-10, 11):
6 job_out(i)

8 @process(fail_type = FAILSTOP,
print_error = True)

10 def worker(job_in, job_out):
while True:

12 x = job_in()
job_out(1.0/x)

14
@process

16 def consumer(job_in):
try:

18 while True:
x = job_in()

20 print x
except ChannelFailstopException:

22 print "Caught the exception"

24 c = Channel()
d = Channel()

26
Parallel(

28 producer(-c),
3 * worker(+c, -d),

30 consumer(+d)
)

-0.1
2 -0.111111111111

-0.125
4 -0.142857142857

-0.166666666667
6 -0.2

-0.25
8 -0.333333333333

-0.5
10 -1.0

1.0
12 float division by zero

Caught the exception
14

16

18

20

22

24

26

28

30

Listing 8.3: A failstop captured by the consumer and the output

8.2.2 Retire-like Fail-stop

The implementation of retire-like fail-stop is shown in section 7.3.2.
Retire-like fail-stop can be used in networks, were a one or more nodes can be retired,

because of an error. If we look at the Monte Carlo Pi example from section 8.1.1, a single
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process’s result will not make the total result much different Of course, with the Monte Carlo
Pi algorithm, it might be better to just restart that one failing process. If, however, that is not
possible, or the problem is persistent, retire-like fail-stop can be used.

A persistent problem could be failed hardware. If we imagine that each process is located
on its own machine, or indeed on the same machine, but using different hardware, or perhaps
USB devices, we can think of a network where retire-like fail-stop will come in handy.

Such a network, could be the one in figure 8.3. Here we have a producer, P, a worker, W
and a consumer C, as usual. We also have a fail-process, F. This process fails after its first
pass. The producer will hand jobs, here integers, to the fail-process. The fail-process, as well
as the workers, job is to multiply it by two, and pass it on. The worker is latent. It isn’t started
with the rest of the network, but is waiting for a start signal from the producer. In a real-world
scenario, the fail-process would do the task at hand on e.g. the GPU, and the normal worker
on the CPU. As the GPU might be better or faster, we want all the jobs run here. If the GPU
for some reason is broken, we let the CPU process take over. This network is sketched out in
listing 8.4 and its output is in listing 8.5.

Using formal algebra, this network would look like:

P0 = P′0 = SKIP

Px = c!x → Px−1 Θ P′x
P′x = d!x → P′x−1

F = c?x → f !(x · 2)→ F

W = d?x → f !(x · 2)→W

C = f ?x → print!x → C

(8.2)

Rnet =
(

I(P10) ||
(

I(F) ||| I(W)
)
|| I(C)

)
|| Sok(1, 1) || Tok(1, 1) ||Uok(2, 1) (8.3)

where S, T and U are the supervisor processes for the channels c, d and f respectively, and
I is the implicit retire wrapper from section 5.4.

P

F

W

C

Figure 8.3: Retire-like fail-stop network with a failing hardware process

8.2.3 Checkpointing

A small example of using the checkpointing is shown in figure 8.4. We want A and B to be two
processes which sends each other a message, and forwards this message to a collector C. The
collector does not care about the order in which the messages are given.

A and B message each other over the same channel c, and message the collector via channel
f , however, in order to do both, we need an intermediate process for both A and B called A′

and B′.
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from pycsp_import import *
2

@process(fail_type=RETIRELIKE)
4 def producer(cout, dout, job_start, job_end):

try:
6 for i in range(job_start, job_end):

cout(i)
8 except ChannelRetireLikeFailstopException:

for i in range(i, job_end):
10 dout(i)

12 @process(fail_type=RETIRELIKE)
def failer(cin, fout):

14 while True:
x = cin()

16 fout(x*2)
raise Exception("failed hardware")

18
@process(fail_type=RETIRELIKE)

20 def worker(din, fout):
while True:

22 x = din()
fout(x*2)

24
@process(fail_type=RETIRELIKE)

26 def consumer(finish):
while True:

28 try:
x = finish()

30 print x
except ChannelRetireLikeFailstopException:

32 pass

34 c = Channel()
d = Channel()

36 f = Channel()

38 Parallel(
producer(-c, -d, -10, 10),

40 failer(+c, -f),
worker(+d, -f),

42 consumer(+f)
)

Listing 8.4: Retire-like fail-stop network with a failing hardware process

A = c!(”Ping”)→ c?y→ a!y→ A

A′ = a?x → f !x → A′

B = c?x → c!(”Pong”)→ b!x → B

B′ = b?x → f !x → B′

C = f ?x → print!x → C

(8.4)

A supervisor is needed for each pair of communication events:

CPNet =
(

Ch(A) ||Ch(B)
)
||
(

Ch(A′) |||Ch(B′)
)
||Ch(C)

|| Sok(2, 2) || Tok(1, 1) ||Uok(1, 1) ||Vok(2, 1)
(8.5)

Here S, T, U and V are the supervisors, one for each channel. Therefore c ∈ αS , a ∈ αT,
b ∈ αU and f ∈ αV

We need these intermediate processes A′ and B′ because we want A and B to communicate,
but we also want either one of A or B to communicate with C at time.
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-20
2 failed hardware

-18
4 -16

-14
6 -12

-10
8 -8

-6
10 -4

-2
12 0

2
14 4

6
16 8

10
18 12

14
20 16

18

Listing 8.5: Output for listing 8.4

If the communication on f between B and B′ fails, both are rolled back to right after the
previous event. None of the other processes are affected by this.

A

B

Cc
f

(a) Programming model

A A′

B B′

Cc

a

b

f

(b) CSP with intermediate processes

Figure 8.4: Small checkpointing example

The network in figure 8.4 is implemented in PyCSP and listing 8.6 shows it utilising check-
pointing.

Another Example of Checkpointing Another way that checkpointing can be used in PyCSP
is showed in listing 8.7. Here, we send twice on channel c, and receive twice, before print-
ing the result. Between the two inputs, we can fail. In the listing, this is showed again as a
ZeroDivisionError, however this could be anything. If we fail between the two sends, the
first one is run again, as we load the checkpoint and restart the process.

P0 = SKIP

Px = c!(”x : ” + x)→ c!(”y : ”x)→ Px−1

C = c?x → c?y→ print(x, y)→ C

DoubleCheck = Ch(P) ||Ch(C) || Sok(1, 1)

(8.6)
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from pycsp_import import *
2 from random import randint

4 @process(fail_type = CHECKPOINT)
def A(cout, cin, fout):

6 while True:
cout("Ping")

8 fout(cin())

10 @process(fail_type = CHECKPOINT,
retires = -1)

12 def B(cout, cin, fout):
while True:

14 x = cin()
cout("Pong")

16 # This next line fails
# roughly half the time

18 1/randint(0, 1)
fout(x)

20
@process(fail_type = CHECKPOINT)

22 def C(fin, num):
i = load_variables((’i’, 1))

24 for i in range(i, num):
print i, fin()

26 poison(fin)

28 c = Channel()
f = Channel()

30
Parallel(

32 A(-c, +c, -f),
B(-c, +c, -f),

34 C(+f, 100)
)

0 Ping
2 1 Pong

2 Ping
4 3 Pong

4 Ping
6 5 Pong

6 Ping
8 7 Pong

8 Ping
10 9 Pong

10 Ping
12 11 Pong

12 Ping
14 13 Pong

14 Ping
16 15 Pong

16 Ping
18 17 Pong

18 Ping
20 19 Pong

20 Ping
22 21 Pong

22 Ping
24 23 Pong

...
26

28

30

32

34 ...
99 Pong

Listing 8.6: Checkpointing in PyCSP

from pycsp_import import *
2 from random import randint

4 @process(fail_type=CHECKPOINT,
retries=-1)

6 def producer(job_out, start, end):
i = load(i = start)

8 for i in range(i, end):
job_out("x: " + str(i))

10 1 / randint(0, 1)
job_out("y: " + str(i))

12
@process(fail_type=CHECKPOINT,

14 retries=-1)
def consumer(job_in):

16 while True:
x = job_in()

18 y = job_in()
print x, y

20
c = Channel()

22
Parallel(

24 producer(-c, -5, 6),
consumer(+c)

26 )

: -5 y: -5
2 x: -4 y: -4

x: -3 y: -3
4 x: -2 y: -2

x: -1 y: -1
6 x: 0 y: 0

x: 1 y: 1
8 x: 2 y: 2

x: 3 y: 3
10 x: 4 y: 4

x: 5 y: 5
12

14

16

18

20

22

24

26

Listing 8.7: Checkpointing with multiple input on channel c
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Future Work

Exception handling in PyCSP is in a working state, however some things needs further invest-
igation. This chapter will describe what can be done in the future.

9.1 Nonlocal

The implementation for checkpointing suggested in this thesis rely on the use of Pythons
inspect module. The inspect module lets the programmer inspect the call stack, retrieving
the frame containing the process when calling e.g. save_variables. This is not a reliable
solution, as the inspect module do not work in the same way in every implementation of
Python. While programming for this thesis Python 2.7.1 (CPython) for Mac OS has been used.
Python 3 comes with a new keyword nonlocal, which might be used instead of getting the
current frame for the process.

The following quote comes from the Python documentation of nonlocal:

“The nonlocal statement causes the listed identifiers to refer to previously
bound variables in the nearest enclosing scope. This is important because the de-
fault behavior for binding is to search the local namespace first. The statement
allows encapsulated code to rebind variables outside of the local scope besides the
global (module) scope.”

9.2 “On” Processes

When I defined the checkpointing function in section 6.3.5, an assumption was made about the
processes. The processes have to be on the form

P = (x : A→ P(x)) (9.1)

If the processes is not on this form, the function Ch2(P, Q) cannot be made. This is because
we are not allowed to copy and “on” process, as described by Roscoe [Ros11]. Lets say we have
two processes P and Q

P = c→
(

a→ STOP u b→ STOP
)

Q = c→ a→ STOP u c→ b→ STOP
(9.2)

51
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Because non-determinism is distributive, by Hoares L4 law on non-determinism [Hoa85],
P and Q are equivalent. However, if P is checkpointed after c, it will become

Ch2(a→ STOP u b→ STOP, a→ STOP u b→ STOP) (9.3)

Thereby allowing for both choices on a or b. Q however, will be either of the following

Ch2(a→ STOP, a→ STOP) or Ch2(b→ STOP, b→ STOP) (9.4)

This will only allow one of a or b when rolled back to the checkpoint.
Some investigation is needed on this subject, to see if it is possible to define a mechanism

that lets us checkpoint every type of processes.

9.3 Moving Processes After Checkpointing

When we checkpoint a process, we save the variables it is using. Having an identical process
on a different machine, this process could use the same checkpoint, and start from the previous
process’s checkpoint. That is, we can save a checkpoint to file, move the checkpoint, e.g. to a
different server, and run it from the checkpoint. This can be useful when we have processes,
that you want to see if works, but you do not want them to finish on your PC.

This should be implemented into PyCSP, so that a process can choose to terminate after it
has saved its variables to a file.

9.4 No side-effects

In section 6.3.5 I wrote that no side-effects are allowed between two checkpoints. This is never
enforced in the implementation. An implementation, disallowing side-effects, or destroying
checkpoints on side-effects, should be made.
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Conclusion

The basics of CSP channels has been discussed. Any-to-any channels have been constructed
using the interleaving operator. It has been shown that the three other channel types, one-to-
one, any-to-one, and one-to-any, can be made from the any-to-any channel. With or without
the interleaving operator, buffered channels can still exist, with the help of a buffering process,
which accepts all communication, and passes it on. Channels can be made with a choice op-
erator as well, however this requires n · m communication events, where n is the amount of
readers and m is the amount of writers.

With the help of a supervisor process, a process that overlooks the communications on a
channel, poison has been formalised to work on any-to-any channels. The supervisor process
can disallow communications on the channel, because it has the channel in its alphabet, and
are required to do the communication events synchronised. Again, as the other three types of
channels can be made from any-to-any channels, poison works on these as well.

Poisons less aggressive brother, retirement, has been discussed. With retirement a channel
is closed on the last retirement instead of the first poison. That way we can avoid e.g. sending
the number of jobs from a producer to a consumer, as the workers will not be shut down until
there are no more work, and they will not propagate this shut down, until every worker is
done.

Implicit retirement has been discussed as a way of helping programmers to not think about
the shut down of the network. When a process terminates, it automatically retires all of its
channels. Implicit retirement has been implemented in PyCSP as well as shown in the CSP
algebra as wrapper function.

The supervisor paradigm has been used to introduce exception handling in the CSP algebra.
Five different exception patterns has been discussed, fail-stop, retire-like fail-stop, broadcast,
message replay and checkpointing. Fail-stop poisons the network, when a process has entered
an exception state. Retire-like fail-stop only retires that process’s channels. With broadcast, a
message is sent to all subscribing processes, that this one has failed. Message replay rely on
the messages being transformed into objects, having an id and a receiver. If a process fails,
all messages sent to that process can be replayed, e.g. on an any-to-any channel, where other
processes can pick up the work. Checkpointing saves the current state of a process after each
communication event. Upon failure, this process and processes communicating with this one,
are rolled back into the previous checkpoint. From here, the processes are restarted, given
another chance to fulfil their jobs.

Fail-stop, retire-like fail-stop and checkpointing have been implemented in PyCSP. Each can
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be set on in the Process decorator. A number of retries for checkpointing can be set, as well as
a different exception pattern, if this number is reached.

In addition to this thesis, a paper (appendix A) was submitted and accepted to Communic-
ating Process Architectures 2012, a conference on concurrent and parallel programming.
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Exception Handling
and Checkpointing in CSP

Mads Ohm LARSEN a,1 and Brian VINTER b

a Department of Computer Science, University of Copenhagen
b Niels Bohr Institute, University of Copenhagen

Abstract. This paper describes work in progress. It presents a new way of looking at
some of the basics of CSP. The primary contributions is exception handling and check-
pointing of processes and the ability to roll back to a known checkpoint. Channels
are discussed as communication events which are monitored by a supervisor process.
The supervisor process is also used to formalise poison and retire events. Exception
handling and checkpointing are used as means of recovering from an error. The super-
visor process is central to checkpointing and recovery as well. Three different kinds
of exception handling is discussed: fail-stop, retire-like fail-stop, and checkpointing.
Fail-stop works like poison, and retire-like fail-stop works like retire. Checkpointing
works by telling the supervisor process to roll back both participants in a communi-
cation event, to a state immediately after their last successful communication. Only
fail-stop exceptions have been implemented in PyCSP at this point.

Keywords. CSP, PyCSP, Exceptions, Checkpoints, Algebra, Channels

Introduction

Exceptions can occur in any type of software, however reliable software should be able to
handle these exceptions. Currently CSP offers interrupts [1] and has a throw operator [2]
to handle exceptions. These exceptions are internal, however other processes in a network
might want to know about them. In this paper we want to propagate exceptions throughout a
network. These exceptions would trigger a checkpointing mechanism, which would roll back
a pair of processes to a know working state.

To get an understanding of the inner workings of CSP, the basics of channels, poison and
retire will be discussed in sections 1, 2 and 3 respectively. Together with poison a supervisor
paradigm will be developed. This supervisor is critical for telling other processes how to
poison a network, but will also be useful for telling other processes about exceptions. Section
4 contains a discussion on how to handle exceptions using CSP and leads up to the reasoning
behind and discussion of checkpointing in section 4.4.4.

This is work in progress and a working implementation of exception handling as well as
checkpointing is in the making. It will be available together with Mads Ohm Larsens master
thesis [3].

1Corresponding Author: Mads Ohm Larsen, Datalogisk Institut, Universitetsparken 1, DK-2100,
Copenhagen, Denmark. Tel.: +45 3532 1421; Fax.: +45 3532 1401; E-mail: omega@diku.dk.



2 M.O. Larsen et al. / Exception Handling and Checkpointing in CSP

1. Basics

Four different kind of channel types exists: one-to-one, one-to-any, any-to-one, and any-to-
any. These four types are very much alike, however only one-to-one are part of “Core CSP”
as defined by Hoare [1]. The rest has to be built with the use of the interleaving operator.

In the following section i, j, n,m are all elements of N, and 1..n will be used as a short-
hand for the set {1, 2, . . . , n}.
One-to-One A one-to-one channel is simply a channel with one writer and one reader. This
is exactly what we have in the algebra as a communication event.

P = c!x→ P ′

Q = c?x→ Q′(x)

O2O = P ||Q
(1)

P Q
c

Figure 1. One-to-one channel

Any-to-One The any-to-one channel has any amount n of writers, but only one reader. This
can be modelled with the algebra as many writers interleaving on a communication event.
The reader and one of the writers must be ready to communicate in any order.

Pi = c!x→ P ′
i

Q = c?x→ Q′(x)

A2O =

(
|||

i∈1..n
Pi

)
||Q

(2)

P1

P2

Pn

Q
c

Figure 2. Any-to-one channel

One-to-Any The one-to-any channel type is equivalent to that of the any-to-one, but with
the readers and writers reversed. Here we have one writer and many interleaving readers.

Any-to-Any The last channel type is the any-to-any channel. Here there are many writers
and many readers, all can communicate at once.

Pi = c!x→ P ′
i

Qj = c?x→ Q′
j(x)

A2A =

(
|||

i∈1..n
Pi

)
||
(
|||

j∈1..m
Qj

) (3)
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P1

P2

Pn

Q1

Q2

Qm

c

Figure 3. Any-to-any channel

Each step one of the Pi writers get to write to the channel and of the the Qj readers get
to read.

Note that if n = 1 and m = 1, all we have left is:

P1 = c!x→ P ′
1

Q1 = c?x→ Q′
1(x)

O2O =

(
|||

i∈1..n
Pi

)
||
(
|||

j∈1..m
Qj

)

= P1 ||Q1

(4)

This is identical to that of the one-to-one channel. Having either n = 1 or m = 1 gives
us one-to-any and any-to-one channels respectively.

With the channels covered, we can explore the poison mechanism.

2. Poison

To poison a network is to provide a safe termination of said network [4,5]. This is done by
injecting poison into the network, and having the processes propagate this poison throughout
the network. In PyCSP a poisoned channel throws an exception when other processes try to
communicate over it, thus poisoning the other channels.

To model a network capable of being poisoned, a supervisor process is introduced. This
supervisor is listening to all the communications over a channel, be it one-to-one or any-
to-any. As the communication has to be synchronised, the supervisor process can disallow
communication, by not engaging in the communication event.

Thus, allowing outside processes to poison the channel via a cpid event, we can model a
poisoning network like:

P = (c!x→ P ′) 2 (cpoison → Pp)

Q = (c?x→ Q′(x)) 2 (cpoison → Qp)

Sok = (d : {c.m |m ∈ αc})→ Sok

)
2
(
~
id
cpid → Se

)

Se = cpoison → Se 2 SKIP

(5)

Note that no two other processes can have the same cpid as that would mean that they
had to agree on poisoning the c channel. Pp and Qp are two processes that poison all of
P respectively Q’s channels. Se is a process which will poison the processes that shares c.
Figure 4 shows how these processes interact.
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Pp = ||
c∈αP

cpid → SKIP (6)

To create a poisonable-network P , Q, and Sok process should be run in parallel.

POISON = P || Q || Sok (7)

P Q

Sok

c

cpid

Figure 4. Poison on one-to-one channel

This one-to-one algebra of poison in equation (5) can easily be extended to any-to-any
channels. The Sok and Se processes are the same, as they only concern the channel.

Pi = (c!x→ P ′
i ) 2 (cpoison → Ppi)

Qj = (c?x→ Q′
i(x)) 2 (cpoison → Qpj )

(8)

Again, Ppi and Qpj are processes that poison all of Pi and Qj’s channels respectively
like equation (6).

P1

P2

Pn

Q1

Q2

Qm

Sok

c

cpid

Figure 5. Poison on any-to-any channel

To create a poisonable-network we need to let all of Pi and Qj interleave. Sok should be
run in parallel with these:

POISONA2A =

(
|||

i∈1..n
Pi

)
||
(
|||

j∈1..m
Qj

)
||Sok (9)

And again, having n = 1 and m = 1 gives us

POISONO2O = P1 || Q1 || Sok (10)

With poison on any-to-any channels, we can now explore retirement, which works much
like poison.
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3. Retirement

Instead of poisoning a channel we can retire a process from the channel [6]. This works by
letting a process decide no longer to subscribe to events on a channel c.

When modelling retirement the initial processes for Pi andQi, from equation (3), are the
same.

Pi = (c!x→ P ′
i ) 2 (cpoison → Pp)

Qj =
(
c?x→ Q′

j(x)
) 2 (cpoison → Qp)

(11)

The supervisor’s Se process is also the same, as it should tell all processes with channel
c that all processes are retired.

The Sok process needs to be altered to incorporate retirement. Here we give two new
events, crwid

and crrid , to retire either a writer or a reader. As it is up to the programmer to
make sure that a process P no longer writes or reads from c after it has retired, the supervisor
only needs to know how many of each are subscribing to the channel in the first place.

Sok(n,m) = if (n = 0 or m = 0)

Se

else

((d : {c.me |me ∈ αc})→ Sok (n,m))

~ (crwid
→ Sok(n− 1,m)

)

~ (crrid → Sok(n,m− 1)
)

end

(12)

Again each of the crrid and crwid
events should be unique for each processes, as multiple

of these means that the processes need to agree on synchronisation. When either all of the
readers or writers have left a channel, it will be poisoned. This means that a process cannot
input on a channel after all the readers are retired and likewise the readers cannot get output.

All the Pi and Qj should be interleaving as usual, but this time, the supervisor needs to
know how many of them there are.

RETIREA2A =

(
|||

i∈1..n
Pi

)
||
(
|||

j∈1..m
Qj

)
||Sok(n,m) (13)

With the notion of the supervisor in mind, we can now move on to exception handling.

4. Exception Handling

As already written exceptions can occur in any type of software, but reliable software should
be able to handle these exceptions. Hilderink describes an exception handling mechanism for
a CSP library for Java, called “Communicating Thread for Java” (CTJ) [7], however this is
not formalised for CSP, but rather just shown to work with the current Java implementation.

Two models are discussed: the resumption model, where the exception handler corrects
the exception and returns; and the termination model, where the exception handler cleans up
and terminates.

Hilderink also proposes a notation for describing the exception handling in CSP algebra,
using ~∆ as an exception operator [8].
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P = Q ~∆ EH (14)

Here the process P behaves like Q, unless there is an exception, then it behaves like
EH . EH in this case will only collect the exceptions, and not act upon them.

4.1. What is an Exception?

A process that suddenly behaves as STOP is often an undesirable behaviour, which we
would like a way to escape from. This is where exception handling comes in action.

To understand how an exception handling mechanism works, we first need to know what
an exception, or exception state, is.

A process is in an exception state if part of it has caused an error and cannot terminate.
This could be a division-by-zero error, failure in hardware, or another kind of error. The
process cannot continue after being in an exception state, and therefore behaves like the
deadlock process STOP , however with an exception handling mechanism, we can interrupt
the failed process, and perhaps either fix and resume; or clean up and terminate the process.

A second important thing we need to understand is when the exception handling mech-
anism should step in. Hilderink proposes that this is done when another process tries to com-
municate with the failed process. This is very similar to both poison and retire, where a pro-
cess is poisoned if it tries to read from or write to a poisoned channel, and it will fit together
nicely with the supervisor paradigm, used for both poison and retire. In a real-life example we
want a CSP-like programming language, like PyCSP, to handle some exceptions internally,
using the language’s normal exception handling, but in some cases we want other processes
to be aware that a process has failed.

A last important thing is that a process in an exception state, will not be able to release its
channels, which means that the rest of the network cannot terminate correctly. The exception
handler must therefore also be responsible for releasing the channels of the process. Different
ways to shut down the network in a clean manner will be discussed.

4.2. The Exception Handling Operator

As already mentioned Hilderink proposes using ~∆ as an exception operator, however CSP
already offers an interrupt operator: ∆ [1,9].

P ∆ Q (15)

This process behaves as P , but is interrupted on the first occurrence of an event from Q.
P is never resumed afterwards. It is assumed that the initial event of Q is not in the alphabet
of P . Hoare describes a disaster from outside a process, as a catastrophe [1] and denotes this
with a lightning bolt � /∈ αP . A process that behaves as P up until a catastrophe and then
behaves as Q is defined by:

P �̂ Q = P ∆ ( � → Q) (16)

Roscoe continues Hoares idea of a catastrophe, and creates a throw operator Θ for inter-
nal errors [2].

P Θx:A Q(x) (17)

Here P is interrupted by a named event x from A. Hilderink and Roscoes two operators
are very similar, in the way that they interrupt the current flow of a process, and hands the
control over to another process.

With the throw operator we have a way of talking about exceptions. Exceptions is simply
an event x from A which occurs when a process P enters an exception state. As mentioned
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above, this could be a division-by-zero error or similar. As proposed by Hilderink, this event
should occur instead of communication on a channel belonging to a process in an exception
state. When it occurs this way, we can treat it as a communication event.

In a real-life example we could have multiple processes running on multiple machines.
Having the exception as a communication event means that we can transfer it from one ma-
chine to another, thereby propagating the exception throughout the network letting the right
process handle the exception.

4.3. Exceptions and the Supervisor

Using the same paradigm as with poison and retire, the supervisor paradigm, the exception
handling mechanism can be incorporated into a network. We want the exception handler
to catch all exception, with which it can decide what to do. The alphabet error therefore
contains all errors. In this section Θ will be used as a short hand for Θerror, when it is not
necessary to denote the error-alphabet.

Here it is shown for a network utilising the any-to-any channel, but of course it works
for the other types of channel, by setting either the amount of writers or readers, or both, to
one. A writer and reader process could be expressed as Pi and Qj

Pi = (c!x→ P ′
i ) Θ Pei

Qj = (c?x→ Q′
j(x)) Θ Qej

(18)

The Pei and Qej processes could be telling the supervisor that the process in hand is in
an exception state.

Pei = cei → SKIP

Qej = cej → SKIP
(19)

However, they could also be used to correct the problem at hand; or try and then only
tell the supervisor if they failed.

Depending on which of the following exception patterns one chooses, the supervisor
processes will have to be adapted to this. The Se process could try to commend the problem,
poison the rest of the network, or it might even have an exception handler of its own, which
it could tell. Again, as with both poison and retire, the cei has to be unique for that process,
else multiple processes would have to agree on the error state.

With this handling of exceptions we can explore different ways of shutting down the
network.

4.4. Exception Patterns

The exceptions are always “triggered” by the next process reading or writing to a channel,
that the process in an exception state is subscribing to. This is the same way both poison and
retirement works.

4.4.1. Fail-stop

When a process enters an exception state, it stops and all data previously sent to it will get lost.
An example could be a producer, sending jobs to workers. One worker enters an exception
state, and the job it was granted will get lost, without the chance of recovery.

If another process tries to communicate with the failed one, the exception should propa-
gate though the network, until the entire network is in an exception state. This is effectively
the same as the process in the exception state poisoning all of its channels.
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from pycsp_import import *

2
@process

4 def producer(cout):
for i in range(-2, 3):

6 cout(i)

8 @process
def worker(cin, cout):

10 while True:
x = cin()

12 cout(1.0/x)

14 @process
def consumer(cin):

16 while True:
print cin()

18
c = Channel()

20 d = Channel()

22 Parallel(
producer(-c),

24 2 * worker(+c, -d),
consumer(+d)

26 )

-0.5

2 -1
integer division or modulo by zero

4

6

8

10

12

14

16

18

20

22

24

26

Figure 6. Fail-stop in PyCSP

In figure 6, an implementation of a small producer and worker network is shown. The
workers job is to take 1

x
for every x passed by the producer. Of course 1

0
is undefined, so the

network fails.

P

W1

W2

C
c d

Θ poisons its channels

Figure 7. Fail-stop in worker process

Figure 7 shows the fail-stop network from figure 6. The supervisor processes, which are
not shown in the figure, will have to behave much like the one we saw with poisoning in
equation (8), where all other processes are poisoned.

In PyCSP we have a central object, where each process are created. This central object
has a run-method, which is surrounded by a try-catch block. When we reach the division-by-
zero, this try-catch block catches the error, runs through the process channels, and poisons
each of them, thereby shutting down the network in a proper manner. Poison and retire works
in the same way.

4.4.2. Retire-like Fail-stop

While fail-stop resembles poison, this pattern instead mimics retire. The information sent
to the process that are in an exception state will still be lost, as with the original fail-stop,
however we have the added ability, that the entire network is not shut down because of one
exception. If we have a lot of distributed workers, and one fails because of e.g. a disk failure,
the network will continue, but that one worker, and its job, will be lost.

4.4.3. Checkpointing

With checkpointing it is possible for a process in an exception state to roll back to the last
checkpoint, which could either be defined by the programmer, or it could simply be just after
the last communication with another process. That way, all information would be kept intact,
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and the process at hand could try the thing that caused it to go into an exception state again.
This could be a non-deterministic event, which means that it could succeed the second time
around.

A counter could be attached to this form of exception pattern, which means that the pro-
cess can only roll back that many times, before actually failing like fail-stop, retire-like fail-
stop or even broadcasting the failure. No side-effects are allowed between the last checkpoint
and the point where the exception occurred, because these are thing that cannot be rolled
back.

Checkpoints are quite similar to transactions, as we know them from SQL, in that we
either do all the things between two checkpoints, or none of them, because they will be rolled
back.

With checkpoints the handling of the exception could be invisible to the outside world,
as the roll back could happen without any other process being aware of it. This is essentially
what the exceptions are meant to do, however the roll back method might not be the best way
to go for it.

Remembering that PyCSP should be convenient to use, having the programmer think
about checkpoints and side-effects in their code is not the way to go.

Think of the following scenario:

1. Events up to this point
2. Process A communicate with Process B
3. Process B receives and terminates/makes a side-effect
4. Process A goes into an exception state and wants to roll back to 1.

Process A can try to roll back the state to between the second and third item, that is after
the communication between Process A and Process B. Process B would have to roll back to
it’s last checkpoint.If Process B has in fact terminated, Process A should enter an exception
state, and possible resolve it with fail-stop.

In the algebra, Process B wouldn’t be able to terminate, before every other process was
willing to do so. Therefore this is only a problem in the implementation, where we allow
processes to terminate when their work is done.

4.4.4. Checkpointing algebra

Checkpointing can be modelled in the algebra with the use of a checkpoint event c© [1] as
well as a roll back event r©. With this, we can define a new process Ch(P ) which behaves
like P , but also incorporates checkpoints. We assume that c©, r© /∈ αP . To define Ch(P ) we
need a helper Ch2(P,Q) where P is the current process and Q is the most recent checkpoint.
As the initial checkpoint must be the start point, we have

Ch(P ) = Ch2(P, P ) (20)

If P = (x : A→ P (x)), then Ch2(P,Q) is defined as

Ch2(P,Q) =
(
x : A→ Ch2(P (x), Q)

| c© → Ch2(P, P )

| r© → Ch(Q,Q)
)

Θ r© → Ch2(Q,Q)

(21)

That is, the process P is working as usual, but upon the event c© we save the current
P as our checkpoint. Upon r© or an error, caught by Θ, we continue on Q, which is our
checkpoint.
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With this checkpointing construct, it is possible to checkpoint an entire network

Ch(P || Q) (22)

However, in practice, this is not what we want. We would much rather like to checkpoint
each individual process

Ch(P ) || Ch(Q) (23)

This gives us the advantage that we can roll back each process individually. However, as
already discussed, because of side-effects we cannot safely roll back over a communication.
Therefore, the event c© should happen after every communication. In order to do this, we
need to make a change to equation (21) as the checkpoints and roll backs needs to be defined
per communication, and not just one for the entire process:

Ch2(P,Q) =
(
x : A→ Ch2(P (x), Q)

~
c∈αP

( c©c → Ch2(P, P ))

~
c∈αP

( r©c → Ch2(Q,Q))
)

Θ ~
c∈αP

r©c → Ch2(Q,Q)

(24)

As the supervisor is listening to all communication, the supervisor process from equation
(5) can be rewritten to:

Sok =
(
d : {c.me |me ∈ c}

)
→ c©c → Sok

2
(

r©c → Sok

) (25)

That is, after every communication, the supervisors tells all parties of the communi-
cation to make a synchronised checkpoint. Upon an exception, caught by Θ, they will roll
themselves back as this is part of the definition in equation (24).

4.4.5. Checkpointing Examples

A small example of using the checkpointing is shown in the following network is shown
in figure 8. We want A and B be two processes which sends each other a message, and
forwards this message to a collector C. The collector does not care about the order in which
the messages are given.

A and B message each other over the same channel c, and message the collector via
channel f , however, in order to do both, we need an intermediate process for both A and B
called A′ and B′.

A = c!x→ c?y → a!y → A

A′ = a?x→ f !x→ A′

B = c?x→ c!y → b!x→ B

B′ = b?x→ f !x→ B′

C = f?x→ C

(26)

A supervisor is needed for each pair of communication events:

CPNet =
(
Ch(A) ||Ch(B)

)
||
(
Ch(A′) |||Ch(B′)

)
||Ch(C)

||Sok(2, 2) ||Tok(1, 1) ||Uok(1, 1) ||Vok(2, 1)
(27)
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Here S, T , U and V are the supervisors, one for each channel. Therefore c ∈ αS ,
a ∈ αT , b ∈ αU and f ∈ αV

We need these intermediate processes A′ and B′ because we want A and B to commu-
nicate, but we also want either one of A or B to communicate with C at time.

If the communication on f between B and B′ fails, both are rolled back to right after the
previous event. None of the other processes are affected by this.

A

B

Cc
f

(a) Programming model

A A′

B B′

Cc

a

b

f

(b) CSP with intermediate processes

Figure 8. Small checkpointing example

The network in figure 8 is implemented in PyCSP and figure 9 shows it utilising check-
pointing. This is not a working example, but rather the way we want it to work.

from pycsp_import import *

2 from random import randint

4 @process
def A(cout, cin, fout):

6 while True:
cout("Ping" )

8 fout(cin())

10 @process
def B(cout, cin, fout):

12 while True:
x = cin()

14 cout("Pong" )
1/randint(0, 1) # This line fails

16 fout(x) # half the time

18 @process
def C(fin, num):

20 for i in range(num):
print i, fin()

22
c = Channel()

24 f = Channel()

26 Parallel(
A(-c, +c, -f),

28 B(-c, +c, -f),
C(+f, 1000)

30 )

0 Ping

2 1 Pong
2 Ping

4 3 Pong
4 Ping

6 5 Pong
6 Ping

8 7 Pong
8 Ping

10 9 Pong
10 Ping

12 11 Pong
12 Ping

14 13 Pong
14 Ping

16 15 Pong
16 Ping

18 17 Pong
18 Ping

20 19 Pong
20 Ping

22 21 Pong
22 Ping

24 23 Pong
...

26

28
...

30 999 Pong

Figure 9. Checkpointing in PyCSP

5. Conclusions and Future Work

With a simple supervisor paradigm we are able to introduce exceptions in the CSP algebra,
and have them work over communications. To support the supervisor paradigm, a way of
visualising one-to-one, one-to-any, any-to-one, and any-to-any channels have been made.
Using the supervisor together with checkpointing, we are able to roll back to previous states
in pairs.

Further investigation is needed in some areas:

• A way of stopping the roll back should be devised, as explained in section 4.4.3.

∗ As already discussed, this could be simply defining a explicit number of times a
process is allowed to roll back, before it goes into another exception state.



12 M.O. Larsen et al. / Exception Handling and Checkpointing in CSP

• Checkpointing only works on “off” processes as described by Roscoe [10]
• A working implementation of exception handling and checkpointing using PyCSP is

the topic of Mads Ohm Larsen’s master thesis [3].
• A checkpoint could be saved to disk and restored at a later time; or could be used as

initial state for another identical process in another network.
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Appendix B

PyCSP code

B.1 const.py

"""
2 Constants

4 Copyright (c) 2009 John Markus Bjoerndalen <jmb@cs.uit.no>,
Brian Vinter <vinter@diku.dk>, Rune M. Friborg <runef@diku.dk>.

6 See LICENSE.txt for licensing details (MIT License).
"""

8

# Operation type
10 READ, WRITE = range(2)

12 # Result of a channel request (ChannelReq)
FAIL, SUCCESS = range(2)

14

# State of a channel request status (ReqStatus)
16 ACTIVE, DONE = range(2)

18 # Constants used for both ChannelReq results and ReqStatus states.
NONE, POISON, RETIRE, FAILSTOP, RETIRELIKE, CHECKPOINT = range(1,7)

20

# Checkpoint retries
22 CHECKPOINT_RETRIES = 2

B.2 __init__.py

#!/usr/bin/env python
2 # -*- coding: latin-1 -*-

"""
4 PyCSP implementation of the CSP Core functionality (Channels, Processes, PAR, ALT).

6 Copyright (c) 2009 John Markus Bjoerndalen <jmb@cs.uit.no>,
Brian Vinter <vinter@diku.dk>, Rune M. Friborg <runef@diku.dk>.

8 Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the

10 "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,

12 distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to

14 the following conditions:

70
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16 The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software. THE

18 SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE

22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""

26

# Imports
28 from guard import Skip, Timeout, SkipGuard, TimeoutGuard

from alternation import choice, Alternation
30 from altselect import FairSelect, AltSelect, InputGuard, OutputGuard

from channel import Channel, ChannelPoisonException, ChannelRetireException, ChannelFailstopException, ChannelRetireLikeFailstopException, ChannelRollBackException
32 from channelend import retire, poison, IN, OUT

from process import io, Process, process, Sequence, Parallel, Spawn, current_process_id, load_variables, load
34

version = (0,7,1, ’threads’)
36

# Set current implementation
38 import pycsp.current

pycsp.current.version = version
40 pycsp.current.trace = False

42 pycsp.current.Skip = Skip
pycsp.current.Timeout = Timeout

44 pycsp.current.SkipGuard = SkipGuard
pycsp.current.TimeoutGuard = TimeoutGuard

46 pycsp.current.choice = choice
pycsp.current.Alternation = Alternation

48 pycsp.current.Channel = Channel
pycsp.current.ChannelPoisonException = ChannelPoisonException

50 pycsp.current.ChannelRetireException = ChannelRetireException
pycsp.current.ChannelFailstopException = ChannelFailstopException

52 pycsp.current.ChannelRetireLikeFailstopException = ChannelRetireLikeFailstopException
pycsp.current.ChannelRollBackException = ChannelRollBackException

54 pycsp.current.retire = retire
pycsp.current.poison = poison

56 pycsp.current.IN = IN
pycsp.current.OUT = OUT

58 pycsp.current.io = io
pycsp.current.Process = Process

60 pycsp.current.process = process
pycsp.current.Sequence = Sequence

62 pycsp.current.Parallel = Parallel
pycsp.current.Spawn = Spawn

64 pycsp.current.current_process_id = current_process_id
pycsp.current.FairSelect = FairSelect

66 pycsp.current.AltSelect = AltSelect
pycsp.current.InputGuard = InputGuard

68 pycsp.current.OutputGuard = OutputGuard
pycsp.current.load_variables = load_variables

70 pycsp.current.load = load

72 def test_suite():
import unittest

74 import doctest
import alternation, channel, channelend, process, guard, buffer

76
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suite = unittest.TestSuite()
78 for mod in alternation, channel, channelend, process, guard, buffer:

suite.addTest(doctest.DocTestSuite(mod))
80 suite.addTest(doctest.DocTestSuite())

return suite

B.3 channel.py

"""
2 Channel module

4 Copyright (c) 2009 John Markus Bjoerndalen <jmb@cs.uit.no>,
Brian Vinter <vinter@diku.dk>, Rune M. Friborg <runef@diku.dk>.

6 Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the

8 "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,

10 distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to

12 the following conditions:

14 The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software. THE

16 SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

18 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE

20 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

22 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""

24 # Imports
import threading

26 import inspect
import time, random

28 from channelend import ChannelRetireException, ChannelRetireLikeFailstopException, ChannelEndRead, ChannelEndWrite
from pycsp.common.const import *

30

# Exceptions
32 class ChannelPoisonException(Exception):

def __init__(self):
34 pass

36 class ChannelFailstopException(Exception):
def __init__(self):

38 pass

40 class ChannelRollBackException(Exception):
def __init__(self):

42 pass

44 # Classes
class ReqStatus:

46 def __init__(self, state=ACTIVE):
self.state=state

48 self.cond = threading.Condition()

50 class ChannelReq:
def __init__(self, status, msg=None, signal=None, name=None):
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52 self.status=status
self.msg=msg

54 self.signal=signal
self.result=FAIL

56 self.name=name

58 def cancel(self):
self.status.cond.acquire()

60 self.status.state=CANCEL
self.status.cond.notifyAll()

62 self.status.cond.release()

64 def poison(self):
self.status.cond.acquire()

66 if self.result == FAIL and self.status.state == ACTIVE:
self.status.state=POISON

68 self.result=POISON
self.status.cond.notifyAll()

70 self.status.cond.release()

72 def retire(self):
self.status.cond.acquire()

74 if self.result == FAIL and self.status.state == ACTIVE:
self.status.state=RETIRE

76 self.result=RETIRE
self.status.cond.notifyAll()

78 self.status.cond.release()

80 def failstop(self):
self.status.cond.acquire()

82 if self.result == FAIL and self.status.state == ACTIVE:
self.status.state=FAILSTOP

84 self.result=FAILSTOP
self.status.cond.notifyAll()

86 self.status.cond.release()

88 def retirelike(self):
self.status.cond.acquire()

90 if self.result == FAIL and self.status.state == ACTIVE:
self.status.state=RETIRELIKE

92 self.result=RETIRELIKE
self.status.cond.notifyAll()

94 self.status.cond.release()

96 def wait(self):
self.status.cond.acquire()

98 while self.status.state==ACTIVE:
self.status.cond.wait()

100 self.status.cond.release()

102 def offer(self, recipient):
# Eliminate unnecessary locking, by adding an extra test

104 if self.status.state == recipient.status.state == ACTIVE:

106 s_cond = self.status.cond
r_cond = recipient.status.cond

108

# Ensuring to lock in the correct order.
110 if s_cond < r_cond:

s_cond.acquire()
112 r_cond.acquire()
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else:
114 r_cond.acquire()

s_cond.acquire()
116

if self.status.state == recipient.status.state == ACTIVE:
118 recipient.msg=self.msg

self.status.state=DONE
120 self.result=SUCCESS

recipient.status.state=DONE
122 recipient.result=SUCCESS

s_cond.notifyAll()
124 r_cond.notifyAll()

126 # Ensuring that we also release in the correct order. ( done in the opposite order of locking )
if s_cond < r_cond:

128 r_cond.release()
s_cond.release()

130 else:
s_cond.release()

132 r_cond.release()

134

136 class Channel(object):
""" Channel class. Blocking communication

138

>>> from __init__ import *
140

>>> @process
142 ... def P1(cout):

... while True:
144 ... cout(’Hello World’)

146 >>> C = Channel()
>>> Spawn(P1(C.writer()))

148

>>> cin = C.reader()
150 >>> cin()

’Hello World’
152

>>> retire(cin)
154 """

def __new__(cls, *args, **kargs):
156 if kargs.has_key(’buffer’) and kargs[’buffer’] > 0:

import buffer
158 chan = buffer.BufferedChannel(*args, **kargs)

return chan
160 else:

return object.__new__(cls)
162

def __init__(self, name=None, buffer=0):
164 self.readqueue = []

self.writequeue = []
166

self.status = NONE
168 self.old_status = NONE

170 self.readers = 0
self.writers = 0

172

if name == None:
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174 # Create unique name
self.name = str(random.random())+str(time.time())

176 else:
self.name=name

178

# This lock is used to ensure atomic updates of the channelend
180 # reference counting and to protect the read/write queue operations.

self.lock = threading.RLock()
182

def save_variables(self):
184 stack = inspect.stack()

186 try:
locals_ = stack[2][0].f_locals

188 process_ = stack[3][0].f_locals
finally:

190 del stack

192 process_[’self’].vars = locals_

194 def check_termination(self):
if self.status == POISON:

196 raise ChannelPoisonException()
elif self.status == RETIRE:

198 raise ChannelRetireException()
elif self.status == FAILSTOP:

200 raise ChannelFailstopException()
elif self.status == RETIRELIKE:

202 raise ChannelRetireLikeFailstopException()
elif self.status == CHECKPOINT:

204 self.status = self.old_status
raise ChannelRollBackException()

206

def _read(self):
208 self.check_termination()

req=ChannelReq(ReqStatus(), name=self.name)
210 self.post_read(req)

req.wait()
212 self.remove_read(req)

if req.result==SUCCESS:
214 self.save_variables()

return req.msg
216 self.check_termination()

218 print ’We should not get here in read!!!’, req.status.state
return None

220

def _write(self, msg):
222 self.check_termination()

req=ChannelReq(ReqStatus(), msg)
224 self.post_write(req)

req.wait()
226 self.remove_write(req)

if req.result==SUCCESS:
228 self.save_variables()

return
230 self.check_termination()

232 print ’We should not get here in write!!!’, req.status
return

234
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def post_read(self, req):
236 self.check_termination()

238 success = True
self.lock.acquire()

240 if self.status != NONE:
success = False

242 else:
self.readqueue.append(req)

244 self.lock.release()

246 if success:
self.match()

248 else:
self.check_termination()

250

def remove_read(self, req):
252 self.lock.acquire()

self.readqueue.remove(req)
254 self.lock.release()

256 def post_write(self, req):
self.check_termination()

258

success = True
260 self.lock.acquire()

if self.status != NONE:
262 success = False

else:
264 self.writequeue.append(req)

self.lock.release()
266

if success:
268 self.match()

else:
270 self.check_termination()

272 def remove_write(self, req):
self.lock.acquire()

274 self.writequeue.remove(req)
self.lock.release()

276

def match(self):
278 self.lock.acquire()

for w in self.writequeue:
280 for r in self.readqueue:

w.offer(r)
282 self.lock.release()

284 def poison(self):
self.lock.acquire()

286 self.status=POISON
for p in self.readqueue:

288 p.poison()
for p in self.writequeue:

290 p.poison()
self.lock.release()

292

def failstop(self):
294 self.lock.acquire()

self.status=FAILSTOP
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296 for p in self.readqueue:
p.failstop()

298 for p in self.writequeue:
p.failstop()

300 self.lock.release()

302 def rollback(self):
self.lock.acquire()

304

if self.status != CHECKPOINT:
306 self.old_status = self.status

self.status = CHECKPOINT
308

self.lock.release()
310

# syntactic sugar: cin = +chan
312 def __pos__(self):

return self.reader()
314

# syntactic sugar: cout = -chan
316 def __neg__(self):

return self.writer()
318

# syntactic sugar: Channel() * N
320 def __mul__(self, multiplier):

new = [self]
322 for i in range(multiplier-1):

new.append(Channel(name=self.name+str(i+1)))
324 return new

326 # syntactic sugar: N * Channel()
def __rmul__(self, multiplier):

328 return self.__mul__(multiplier)

330 def reader(self):
"""

332 Join as reader

334 >>> C = Channel()
>>> cin = C.reader()

336 >>> isinstance(cin, ChannelEndRead)
True

338 """
self.join_reader()

340 return ChannelEndRead(self)

342 def writer(self):
"""

344 Join as writer

346 >>> C = Channel()
>>> cout = C.writer()

348 >>> isinstance(cout, ChannelEndWrite)
True

350 """

352 self.join_writer()
return ChannelEndWrite(self)

354

def join_reader(self):
356 self.lock.acquire()
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self.readers+=1
358 self.lock.release()

360 def join_writer(self):
self.lock.acquire()

362 self.writers+=1
self.lock.release()

364

def leave_reader(self, status=RETIRE):
366 self.lock.acquire()

if self.status != RETIRE or self.status != RETIRELIKE:
368 self.readers-=1

if self.readers==0:
370 # Set channel retired

self.status = status
372 for p in self.writequeue:

if status == RETIRELIKE:
374 p.retirelike()

else:
376 p.retire()

self.lock.release()
378

def leave_writer(self, status=RETIRE):
380 self.lock.acquire()

if self.status != RETIRE or self.status != RETIRELIKE:
382 self.writers-=1

if self.writers==0:
384 # Set channel retired

self.status = status
386 for p in self.readqueue:

if status == RETIRELIKE:
388 p.retirelike()

else:
390 p.retire()

self.lock.release()
392

# Run tests
394 if __name__ == ’__main__’:

import doctest
396 doctest.testmod()

B.4 channelend.py

"""
2 Channelend module

4 Copyright (c) 2009 John Markus Bjoerndalen <jmb@cs.uit.no>,
Brian Vinter <vinter@diku.dk>, Rune M. Friborg <runef@diku.dk>.

6 Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the

8 "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,

10 distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to

12 the following conditions:

14 The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software. THE

16 SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
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IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
18 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

"""
24 from pycsp.common.const import *

26 # Exceptions
class ChannelRetireException(Exception):

28 def __init__(self):
pass

30

class ChannelRetireLikeFailstopException(Exception):
32 def __init__(self):

pass
34

# Functions
36 def IN(channel):

""" Join as reader
38 """

print ’Warning: IN() are deprecated and will be removed’
40 return channel.reader()

42 def OUT(channel):
""" Join as writer

44 """
print ’Warning: OUT() are deprecated and will be removed’

46 return channel.writer()

48 def retire(*list_of_channelEnds):
""" Retire reader or writer, to do auto-poisoning

50 When all readers or writer of a channel have retired. The channel is retired.

52 >>> from __init__ import *
>>> C = Channel()

54 >>> cout1, cout2 = C.writer(), C.writer()
>>> retire(cout1)

56

>>> Spawn(Process(cout2, ’ok’))
58

>>> try:
60 ... cout1(’fail’)

... except ChannelRetireException:
62 ... True

True
64

>>> cin = C.reader()
66 >>> retire(cin)

"""
68 for channelEnd in list_of_channelEnds:

channelEnd.retire()
70

def poison(*list_of_channelEnds):
72 """ Poison channel

>>> from __init__ import *
74

>>> @process
76 ... def P1(cin, done):

... try:
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78 ... while True:
... cin()

80 ... except ChannelPoisonException:
... done(42)

82

>>> C1, C2 = Channel(), Channel()
84 >>> Spawn(P1(C1.reader(), C2.writer()))

>>> cout = C1.writer()
86 >>> cout(’Test’)

88 >>> poison(cout)

90 >>> cin = C2.reader()
>>> cin()

92 42
"""

94 for channelEnd in list_of_channelEnds:
channelEnd.poison()

96

def failstop(*list_of_channelEnds):
98 for channelEnd in list_of_channelEnds:

channelEnd.failstop()
100

def retirelike(*list_of_channelEnds):
102 for channelEnd in list_of_channelEnds:

channelEnd.retirelike()
104

# Classes
106 class ChannelEndWrite:

def __init__(self, channel):
108 self.channel = channel

self.op = WRITE
110

# Prevention against multiple retires
112 self.isretired = False

114 self.__call__ = self.channel._write
self.post_write = self.channel.post_write

116 self.remove_write = self.channel.remove_write
self.poison = self.channel.poison

118 self.failstop = self.channel.failstop
self.rollback = self.channel.rollback

120

def _retire(self, *ignore):
122 raise ChannelRetireException()

124 def _retirelike(self, *ignore):
raise ChannelRetireLikeFailstopException()

126

def retire(self):
128 if not self.isretired and self.channel.status != POISON and self.channel.status != FAILSTOP:

self.channel.leave_writer()
130 self.__call__ = self._retire

self.post_write = self._retire
132 self.isretired = True

134 def retirelike(self):
if not self.isretired and self.channel.status != POISON and self.channel.status != FAILSTOP:

136 self.channel.leave_writer(RETIRELIKE)
self.__call__ = self._retirelike

138 self.post_write = self._retirelike
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self.isretired = True
140

def __repr__(self):
142 if self.channel.name == None:

return "<ChannelEndWrite wrapping %s>" % self.channel
144 else:

return "<ChannelEndWrite wrapping %s named %s>" % (self.channel, self.channel.name)
146

def isWriter(self):
148 return True

150 def isReader(self):
return False

152

class ChannelEndRead:
154 def __init__(self, channel):

self.channel = channel
156 self.op = READ

158 # Prevention against multiple retires
self.isretired = False

160

self.__call__ = self.channel._read
162 self.post_read = self.channel.post_read

self.remove_read = self.channel.remove_read
164 self.poison = self.channel.poison

self.failstop = self.channel.failstop
166 self.rollback = self.channel.rollback

168 def _retire(self, *ignore):
raise ChannelRetireException()

170

def _retirelike(self, *ignore):
172 raise ChannelRetireLikeFailstopException()

174 def retire(self):
if not self.isretired and self.channel.status != POISON and self.channel.status != FAILSTOP:

176 self.channel.leave_reader()
self.__call__ = self._retire

178 self.post_read = self._retire
self.isretired = True

180

def retirelike(self):
182 if not self.isretired and self.channel.status != POISON and self.channel.status != FAILSTOP:

self.channel.leave_reader(RETIRELIKE)
184 self.__call__ = self._retirelike

self.post_read = self._retirelike
186 self.isretired = True

188 def __repr__(self):
if self.channel.name == None:

190 return "<ChannelEndRead wrapping %s>" % self.channel
else:

192 return "<ChannelEndRead wrapping %s named %s>" % (self.channel, self.channel.name)

194 def isWriter(self):
return False

196

def isReader(self):
198 return True
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200 # Run tests
if __name__ == ’__main__’:

202 import doctest
doctest.testmod()

B.5 process.py

"""
2 Processes and execution

4 Copyright (c) 2009 John Markus Bjoerndalen <jmb@cs.uit.no>,
Brian Vinter <vinter@diku.dk>, Rune M. Friborg <runef@diku.dk>.

6 Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the

8 "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,

10 distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to

12 the following conditions:

14 The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software. THE

16 SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

18 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE

20 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

22 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""

24

# Imports
26 import inspect, sys

import types
28 import threading

import time, random
30 from channel import ChannelPoisonException, ChannelRetireException, ChannelFailstopException, ChannelRetireLikeFailstopException, ChannelRollBackException, Channel

from channelend import ChannelEndRead, ChannelEndWrite
32 from pycsp.common.const import *

34 # Decorators
def process(func=None, **options):

36 """
@process decorator for creating process functions

38

>>> @process
40 ... def P():

... pass
42

>>> isinstance(P(), Process)
44 True

46 Processes can have a fail_type.
This is checked when failing.

48

>>> @process(fail_type=FAILSTOP)
50 ... def P():

... 1/0
52 """
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if func != None:
54 def _call(*args, **kwargs):

return Process(func, options, *args, **kwargs)
56 return _call

else:
58 def _func(func):

return process(func, **options)
60 return _func

62 def io(func):
"""

64 @io decorator for blocking io operations.
In PyCSP threading it has no effect, other than compatibility

66

>>> @io
68 ... def sleep(n):

... import time
70 ... time.sleep(n)

72 >>> sleep(0.01)
"""

74 return func

76 def load_variables(*pargs):
stack = inspect.stack()

78

try:
80 process_ = stack[3][0].f_locals

finally:
82 del stack

84 loaded_vars = process_[’self’].vars

86 var = []
for __x in pargs:

88 if __x[0] in loaded_vars:
var.append(loaded_vars[__x[0]])

90 else:
var.append(__x[1])

92

if len(var) == 1:
94 return var[0]

else:
96 return var

98 def load(**kwargs):
if len(kwargs) > 1:

100 raise AttributeError

102 for __x, __v in kwargs.iteritems():
return load_variables((__x, __v))

104

# Classes
106 class Process(threading.Thread):

""" Process(func, *args, **kwargs)
108 It is recommended to use the @process decorator, to create Process instances

"""
110 def __init__(self, fn, options, *args, **kwargs):

threading.Thread.__init__(self)
112 self.fn = fn
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114 self.fail_type = None
if options is not None and ’fail_type’ in options:

116 self.fail_type = options[’fail_type’]

118 self.args = args
self.kwargs = kwargs

120

# Create unique id
122 self.id = str(random.random())+str(time.time())

124 self.options = options
self.vars = {}

126

self.print_error = False
128 if options is not None and ’print_error’ in options:

self.print_error = options[’print_error’]
130

self.max_retries = CHECKPOINT_RETRIES
132 if options is not None and ’retries’ in options:

self.max_retries = options[’retries’]
134

self.retries = 0
136

self.fail_type_after_retries = self.__check_retirelike
138 if options is not None and ’fail_type_after_retries’ in options:

if options[’fail_type_after_retries’] == FAILSTOP:
140 self.fail_type_after_retries = self.__check_failstop

142 def run(self):
try:

144 # Store the returned value from the process
self.fn(*self.args, **self.kwargs)

146 # The process is done
# It should auto retire all of its channels

148 self.__check_retire(self.args)
self.__check_retire(self.kwargs.values())

150 except ChannelPoisonException:
# look for channels and channel ends

152 self.__check_poison(self.args)
self.__check_poison(self.kwargs.values())

154 except ChannelRetireException:
# look for channel ends

156 self.__check_retire(self.args)
self.__check_retire(self.kwargs.values())

158 except ChannelFailstopException:
self.__check_failstop(self.args)

160 self.__check_failstop(self.kwargs.values())
except ChannelRetireLikeFailstopException:

162 self.__check_retirelike(self.args)
self.__check_retirelike(self.kwargs.values())

164 except ChannelRollBackException:
# Another process sharing a channel with this one

166 # has rolled back, so we must as well.
self.run()

168 except Exception as e:
if self.print_error:

170 print e

172 fail_type_fn = None
rerun = False

174
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if self.fail_type == FAILSTOP:
176 fail_type_fn = self.__check_failstop

elif self.fail_type == RETIRELIKE:
178 fail_type_fn = self.__check_retirelike

elif self.fail_type == CHECKPOINT:
180 if self.max_retries != -1 and self.retries >= self.max_retries:

fail_type_fn = self.fail_type_after_retries
182 else:

rerun = True
184 fail_type_fn = self.__check_checkpointing

186 if fail_type_fn is not None:
fail_type_fn(self.args)

188 fail_type_fn(self.kwargs.values())

190 if rerun:
self.retries += 1

192 self.run()

194 def __check_poison(self, args):
for arg in args:

196 try:
if types.ListType == type(arg) or types.TupleType == type(arg):

198 self.__check_poison(arg)
elif types.DictType == type(arg):

200 self.__check_poison(arg.keys())
self.__check_poison(arg.values())

202 elif type(arg.poison) == types.UnboundMethodType:
arg.poison()

204 except AttributeError:
pass

206

def __check_retire(self, args):
208 for arg in args:

try:
210 if types.ListType == type(arg) or types.TupleType == type(arg):

self.__check_retire(arg)
212 elif types.DictType == type(arg):

self.__check_retire(arg.keys())
214 self.__check_retire(arg.values())

elif type(arg.retire) == types.UnboundMethodType:
216 # Ignore if try to retire an already retired channel end.

try:
218 arg.retire()

except ChannelRetireException:
220 pass

except ChannelRetireLikeFailstopException:
222 pass

except AttributeError:
224 pass

226 def __check_failstop(self, args):
for arg in args:

228 try:
if types.ListType == type(arg) or types.TupleType == type(arg):

230 self.__check_failstop(arg)
elif types.DictType == type(arg):

232 self.__check_failstop(arg.keys())
self.__check_failstop(arg.values())

234 elif type(arg.failstop) == types.UnboundMethodType:
arg.failstop()
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236 except AttributeError:
pass

238

def __check_retirelike(self, args):
240 for arg in args:

try:
242 if types.ListType == type(arg) or types.TupleType == type(arg):

self.__check_retirelike(arg)
244 elif types.DictType == type(arg):

self.__check_retirelike(arg.keys())
246 self.__check_retirelike(arg.values())

elif type(arg.retirelike) == types.UnboundMethodType:
248 # Ignore if try to retire an already retired channel end.

try:
250 arg.retirelike()

except ChannelRetireLikeFailstopException:
252 pass

except ChannelRetireException:
254 pass

except AttributeError:
256 pass

258 def __check_checkpointing(self, args):
for arg in args:

260 try:
if types.ListType == type(arg) or types.TupleType == type(arg):

262 self.__check_checkpointing(arg)
elif types.DictType == type(arg):

264 self.__check_checkpointing(arg.keys())
self.__check_checkpointing(arg.values())

266 elif type(arg.rollback) == types.UnboundMethodType:
# Our argument is a channel

268 arg.rollback()
except AttributeError:

270 pass

272 # syntactic sugar: Process() * 2 == [Process<1>,Process<2>]
def __mul__(self, multiplier):

274 return [self] + [Process(self.fn, self.options, *self.__mul_channel_ends(self.args), **self.__mul_channel_ends(self.kwargs)) for i in range(multiplier - 1)]

276 # syntactic sugar: 2 * Process() == [Process<1>,Process<2>]
def __rmul__(self, multiplier):

278 return self.__mul__(multiplier)

280 # Copy lists and dictionaries
def __mul_channel_ends(self, args):

282 if types.ListType == type(args) or types.TupleType == type(args):
R = []

284 for item in args:
try:

286 if type(item.isReader) == types.UnboundMethodType and item.isReader():
R.append(item.channel.reader())

288 elif type(item.isWriter) == types.UnboundMethodType and item.isWriter():
R.append(item.channel.writer())

290 except AttributeError:
if item == types.ListType or item == types.DictType or item == types.TupleType:

292 R.append(self.__mul_channel_ends(item))
else:

294 R.append(item)

296 if types.TupleType == type(args):
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return tuple(R)
298 else:

return R
300

elif types.DictType == type(args):
302 R = {}

for key in args:
304 try:

if type(key.isReader) == types.UnboundMethodType and key.isReader():
306 R[key.channel.reader()] = args[key]

elif type(key.isWriter) == types.UnboundMethodType and key.isWriter():
308 R[key.channel.writer()] = args[key]

elif type(args[key].isReader) == types.UnboundMethodType and args[key].isReader():
310 R[key] = args[key].channel.reader()

elif type(args[key].isWriter) == types.UnboundMethodType and args[key].isWriter():
312 R[key] = args[key].channel.writer()

except AttributeError:
314 if args[key] == types.ListType or args[key] == types.DictType or args[key] == types.TupleType:

R[key] = self.__mul_channel_ends(args[key])
316 else:

R[key] = args[key]
318 return R

return args
320

# Functions
322 def Parallel(*plist):

""" Parallel(P1, [P2, .. ,PN])
324 >>> from __init__ import *

326 >>> @process
... def P1(cout, id):

328 ... for i in range(10):
... cout(id)

330

>>> @process
332 ... def P2(cin):

... for i in range(10):
334 ... cin()

336 >>> C = [Channel() for i in range(10)]
>>> Cin = [chan.reader() for chan in C]

338 >>> Cout = [chan.writer() for chan in C]

340 >>> Parallel([P1(Cout[i], i) for i in range(10)],[P2(Cin[i]) for i in range(10)])
"""

342 _parallel(plist, True)

344 def Spawn(*plist):
""" Spawn(P1, [P2, .. ,PN])

346 >>> from __init__ import *

348 >>> @process
... def P1(cout, id):

350 ... for i in range(10):
... cout(id)

352

>>> C = Channel()
354 >>> Spawn([P1(C.writer(), i) for i in range(10)])

356 >>> L = []
>>> cin = C.reader()
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358 >>> for i in range(100):
... L.append(cin())

360

>>> len(L)
362 100

"""
364 _parallel(plist, False)

366 def _parallel(plist, block = True):
processes=[]

368 for p in plist:
if type(p)==list:

370 for q in p:
processes.append(q)

372 else:
processes.append(p)

374

for p in processes:
376 p.start()

378 if block:
for p in processes:

380 p.join()

382

def Sequence(*plist):
384 """ Sequence(P1, [P2, .. ,PN])

The Sequence construct returns when all given processes exit.
386 >>> from __init__ import *

388 >>> @process
... def P1(cout):

390 ... Sequence([Process(cout,i) for i in range(10)])

392 >>> C = Channel()
>>> Spawn(P1(C.writer()))

394

>>> L = []
396 >>> cin = C.reader()

>>> for i in range(10):
398 ... L.append(cin())

400 >>> L
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

402 """
processes=[]

404 for p in plist:
if type(p)==list:

406 for q in p:
processes.append(q)

408 else:
processes.append(p)

410

# For every process we simulate a new process_id. When executing
412 # in Main thread/process we set the new id in a global variable.

try:
414 # compatible with Python 2.6+

t = threading.current_thread()
416 name = t.name

except AttributeError:
418 # compatible with Python 2.5-
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t = threading.currentThread()
420 name = t.getName()

422 if name == ’MainThread’:
global MAINTHREAD_ID

424 for p in processes:
MAINTHREAD_ID = p.id

426

# Call Run directly instead of start() and join()
428 p.run()

del MAINTHREAD_ID
430 else:

t_original_id = t.id
432 for p in processes:

t.id = p.id
434

# Call Run directly instead of start() and join()
436 p.run()

t.id = t_original_id
438

def current_process_id():
440 try:

# compatible with Python 2.6+
442 t = threading.current_thread()

name = t.name
444 except AttributeError:

# compatible with Python 2.5-
446 t = threading.currentThread()

name = t.getName()
448

if name == ’MainThread’:
450 try:

return MAINTHREAD_ID
452 except NameError:

return ’__main__’
454 return t.id

456 # Run tests
if __name__ == ’__main__’:

458 import doctest
doctest.testmod()


	Contents
	Introduction
	Motivation
	Basics
	One-to-One Channels
	Any-to-One Channels
	One-to-Any Channels
	Any-to-Any Channels
	Buffered Channels
	Creating Buffered Any-to-any Channels Without Interleaving


	Poison
	Combining Any-to-any Channels and Poison
	Outsider Poison

	Retirement
	Consequences of Using Poison
	Retirement in the Algebra
	Openness of Retirement
	Implicit Retirement

	Formalising Exception Handling
	What is an Exception?
	The Exception Handling Operator

	Exceptions and the Supervisor
	Exception Patterns
	Fail-stop
	Retire-like Fail-stop
	Broadcast
	Message Replay
	Checkpointing


	Implementation
	CSP and CSP-like Programming Languages
	Implicit Retirement
	Exception Patterns
	Fail-stop
	Retire-like Fail-stop
	Checkpointing


	Examples
	Implicit Retirement
	Monte Carlo Pi

	Exception Handling
	Fail-stop
	Retire-like Fail-stop
	Checkpointing


	Future Work
	Nonlocal
	``On'' Processes
	Moving Processes After Checkpointing
	No side-effects

	Conclusion
	Bibliography
	Exception Handling and Checkpointing in CSP paper
	PyCSP code
	const.py
	__init__.py
	channel.py
	channelend.py
	process.py


