DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN o

Exception Handling in Communicating
Sequential Processes

Mads Ohm Larsen

Copenhagen University: Department of Computer Science

4. september 2012
Slide 1/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Outline

@ Motivation
@® Back to Basics

© Supervisor Paradigm
Poison
Retirement

@ Exception Handling
Fail-stop
Retire-like Fail-stop

©® Checkpointing
@ Conclusions

@ Future Work

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 2/53

COPENHAGEN

Outline

@ Motivation

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 3/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Motivation
Why Should We Care?

e Reliable software is able to handle exceptions.

e Most programming languages today can handle
exceptions internally.

e Using CSP we should be able to let other processes
handle an exception.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012 .
Slide 4/53

COPENHAGEN

Outline

@® Back to Basics

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 5/53

UNIVERSITY OF COPENHAGEN

DEPARTMENT OF COMPUTER SCIENCE

Back to Basics

What is Communication?

e A communication is an event done by two or more
processes in parallel.

One-to-one

i 0@

0,0="P||Q

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012 %

Slide 6/53 .

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Back to Basics

What is Communication?

e Any-to-any channels can be “created” with the use of
the interleaving operator.

P, =clx — P} e c @
Q= c?x = Qj(x)

AA = P; Q;
? (i€|1”.n)“ j€|1|.|,m ! j \)

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 7/53

COPENHAGEN

Outline

® Supervisor Paradigm

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 8/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Supervisor Paradigm

Meet the Supervisor

e A supervisor overlooks the channel.

e |t controls which communication events are allowed, by
engaging in them.

D@

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 9/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIEN

Supervisor Paradigm

Meet the Supervisor

C

o e

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 10/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Supervisor Paradigm

Meet the Supervisor

e Let us look at the supervisor process.

Supervisor

Sok = (d {cm|me ac}) — Sok

e Right now this allows for all communication, when run
in parallel, however it can be modified for both poison,
retirement and exception handling.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 11/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Poison
Killing a Network

e Each process should be able to shut down.

e In various implementations of CSP we have a poison
construct to shut down a network.

e The supervisor process can be altered to encompass
poison.

e |t must have a unique event, for each other process, that
should be able to poison the channel, it overlooks.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012 .
Slide 12/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIE

Poison
Killing a Network

Sok = ((d {em|me ac}) — 50k> O <%C”"d — 5e>
Se = Cpoison — Se O SKIP
P; = (c!x = P{) O (cpoison — Pp;)

Qj = (C?X — QJ/(X)) O (Cpoison — ij)

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 13/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Poison
Killing a Network

Poison

POISONA2A:< Il P,-)u Q| 11 So

i€l..n j€L.m

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012 .
Slide 13/53

COPENHAGEN

Poison
Killing a Network

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 14/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Retirement
Shutting Down a Network

e Retirement is poisons less aggressive brother.

e We count reader and writers. A channel is retired if
either reaches zero.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 15/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Retirement
Shutting Down a Network

Retirements Supervisor

Sok(0,-) = Se
Sok(-,0) = Se
Sok(n,m) = ((d : {c.me | me € ac}) — Sex (n, m))

1

9 (Crwy = Sok(n—1,m))
(

9 Crry = Sok(n, m —1))
I

Se = Cretire — Se O SKIP

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 16/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Retirement
Shutting Down a Network

Retirement Network

RET/REAzAz(I P,-)H Q) 1l Soelny m)
i€l..n JjEL.m

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012 .
Slide 17/53

COPENHAGEN

Outline

@ Exception Handling

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 18/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Exception Handling

How Do We Handle Exceptions?

e CSP already offers to interrupt a process via the
interrupt operator.

Interrupt

PAQ

e This behaves as P but is interrupted on the first
occurrence of an event of Q.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 19/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Exception Handling

How Do We Handle Exceptions?

e We call an outside-error a catastrophe % .

e A process that behaves as P up until a catastrophe and
then behaves as Q is defined by

PiQ=PA(5—Q)
e Roscoe continues this, and creates the throw operator

P eX:A Q(X)

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 20/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Exception Handling

How Do We Handle Exceptions?

e We can catch all errors in a process with this throw
operator.

P: = (c!x — P!) Oerror Pe,
Qi = (c?x = Qi(X)) Oerror Qe

e The P, and Qe; processes could be telling the supervisor
that the process in hand is in an exception state.

Handled
Pe, = ce;, — SKIP
er = Ce; — SKIP

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 21/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Fail-stop
Press the Big Red Button

e Fail-stop is just like poison.

e It occurs when a process goes into an exception state.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 22/53

COPENHAGEN

Fail-stop
Press the Big Red Button

© poisons its channels

)
®- >©
()

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 23/53

F COMPU

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENC

Fail-stop
Press the Big Red Button

1 from pycsp_import import *

2

3 @process

4 def producer (job_out): ; Paralil.lel((-c)
5 for i in range(-10, 11): producert-c),
6 job_out (i) 3 3 * worker(+c, -d),
. - 4 consumer (+d)
8 | @process(fail_type = FAILSTOP) 5

9 def worker(job_in, job_out):

10 while True: 1 -0.1

11 x = job_in(Q) 2 -0.111111111111
12 job_out (1.0/x) 3 -0.125

13 o 4 -0.142857142857
14 process L 5 -0.166666666667
15 def consumer (job_in): 6 ~0.2

}? trY};.l True: 7 |-0.25

h while _rge: 0 8 -0.333333333333
8 X = job_in 9 |-0.5

19 print x 10 1.0

20 except ChannelFailstopException: 11 1 0

;; print "Caught the exception" 12 Caught the exception
23 ¢ = Channel()

24 d = Channel()

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 24/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Retire-like Fail-stop
Press the Slightly Smaller Red Button

e Of course, retire-like fail-stop works like retire.

Py = Py = SKIP

Py=clx =P, 1 © P,
P.=d\x — P._,
F=c?x—fl(x-2)—=F
W=d?x— fi(x-2) > W
C = f?x — print'x — C

Rnet = (1(Po) || (1(F) Il 1(W)) 11 1(C))
|| Sok(]-a 1) ” Tok(la 1) ” Uok(27 1)

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 25/53

UNIVERSITY

O~ U ks WN -

OF COPENHAGEN

Retire-like Fail-stop
Press the Slightly Smaller Red Button

from pycsp_import import *

@process(fail_type = RETIRELIKE)
def producer(cout, dout, job_start,

job_end) :
try:
for i in range(job_start, job_end):
cout (i)
except ChannelRetirelLike...
FailstopException:
for i in range(i, job_end):
dout (i)

@process(fail_type = RETIRELIKE)
def failer(cin, fout):
while True:
x = cin()
fout (x*2)
raise Exception("failed hardware")

@process(fail_type = RETIRELIKE)
def worker(din, fout):
while True:
x = din()
fout (x*2)

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 26/53

©WOTDU s WN -

DEPARTMENT OF COMPUTER SCIENC

@process(fail_type = RETIRELIKE)
def consumer (finish):
while True:
x = finish()
print x
¢ = Channel()
d = Channel()
f = Channel()
Parallel(

producer(-c, -d, -10, 10),
failer(+c, -f),

worker(+d, -f),

consumer (+f)

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Retire-like Fail-stop
Press the Slightly Smaller Red Button

1 -20
2 failed hardware
3 -18
4 -16
5 -14
6 -12
7 -10
8 -8
9 -6
10 -4
11 -2
12 0
13 2
14 4
15 6
16 8
17 10
18 12
19 14
20 16
21 18

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 27/53

COPENHAGEN

Outline

©® Checkpointing

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 28/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Checkpointing
We Can Roll Back Our Mistakes

e We want a way to roll back to last valid checkpoint.

e A checkpoint is rendered invalid on side-effects, from
the process, that is, printing, communicating, writing to
files and so on.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 29/53

OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN DEPARTMENT

Checkpointing

We Can Roll Back Our Mistakes

e Let us create a process Ch(P) which checkpoints P.

e As we want to keep the latest checkpoint, we need an
auxiliary process Ch2(P, Q).
e Here P is the process and Q is the latest checkpoint.

Checkpointing Process

Ch(P) = Ch2(P, P)

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 30/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Checkpointing
We Can Roll Back Our Mistakes

Checkpointing Process

Ch(P) = Ch2(P, P)

e If (© is a checkpoint event, () is a roll back event, and
P = (x:A— P(x)) then Ch2(P, Q) can be defined as

Aux. Checkpointing

Ch2(P, Q) :<x LA = Ch2(P(x), Q)
|© — Cr(P,P)) © ® — Ch2(Q, Q)

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 31/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Checkpointing
We Can Roll Back Our Mistakes

e With this we can checkpoint an entire network with

Checkpoint a Network

Ch(P(l Q)

e ... or individual processes with

Checkpoint a Process

Ch(P) || Ch(Q)

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 32/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Checkpointing
We Can Roll Back Our Mistakes

e Having just one (©) will require every process to
checkpoint at the same time.

e A better way is to have all processes which engages in a
communication to checkpoint at the same time.

e Recalling that processes on each side of the
communication are interleaving, only two of them will
checkpoint, the sender and the receiver.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012 .
Slide 33/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Checkpointing
We Can Roll Back Our Mistakes

e This requires a small change to Ch2.

New Aux. Checkpointing

Cha(P, @) =(x : A— Ch2(P(x), Q)

0 (@~ cha(P. P))) o

ceEx

DP®C — Ch2(Q, Q)

ceEQ

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 34/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Checkpointing
We Can Roll Back Our Mistakes

e The supervisor will have to be in on the checkpointing,
so we change it to

New Aux. Checkpointing
Sok :<d : {c.me | me € c}) — ©c = Sok
O (@c — Sok)

e To keep it simple this is missing all the poison and retire
abilities.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 35/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Checkpointing
We Can Roll Back Our Mistakes

, (W—(x)
|]
Figure: Programming model
& g g Figure: CSP model

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012 .
Slide 36/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Checkpointing
We Can Roll Back Our Mistakes

Checkpointing network

A=c!("Ping") — c?y — aly - A
A =atx — flx - A

B =c?x — c!("Pong") — blx — B
B' = b?x — flx — B’

Col = fooison —+ SKIP

C, = f?x — print'x — C,_1

CPNet = (Ch(A) || Ch(B)) || ((Ch(A") Il Ch(B")) || Ch(Cuo)
|| Sok(27 2) || Tok(17 1) H Uok(17 1) H Vok(za 1)

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 37/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENC

Checkpointing
We Can Roll Back Our Mistakes

1 from pycsp_import import *
3 ; 1 ¢ = Channel()
2 from random import randint _
3 g f = Channel()
4 @process(fail_type = CHECKPOINT)
5 def A(cout, cin, fout): 4 Paia(%leli _£)
6 while True: 2 B(2’ +2’ f)’
7 cout ("Ping") —C 2 Tt
8 fout (cin()) g) C+t, 100)
9
10 Oprocess(fail_type = CHECKPOINT,
11 retries = -1) ;
12 def B(cout, cin, fout): ; (1) giﬁg
13 while True: 3 2 Ping
14 x = cin() 4 3 Pong
15 cout ("Pong") 5 4 Pin,
16 # This nezt line fails 6 |5 pons
17 # roughly half the time 7 e ping
18 1/randint (0, 1) s |7 Pong
19 fout (x) 9 8 Ping
20
21 @process(fail_type = CHECKPOINT) 1(1) o
22 def C(fin, num): 12
23 i = load(i = 1) 13
24 for i in range(i, num): 14
25 f = finQ) 15
26 print i, f 30
27 poison(fin) 16 99 Pong %
Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012 .
Slide 38/53

COPENHAGEN

Outline

@ Conclusions

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 39/53

OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN DEPARTMENT

Conclusions

e Presented a supervisor paradigm
e This is helping poison, retirement as well as exception
handling.
e Shown and implemented fail-stop and retire-like
fail-stop.
e Shown and implemented checkpointing and roll back.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 40/53

COPENHAGEN

Outline

@ Future Work

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 41/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Future Work

e Only works on on-processes, as described by Roscoe in
On the expressiveness of CSP, feb. 2011

e If the process is not on the form P = (x : A — P(x)) we
cannot create Ch2(P, Q).

e Let us say we have two processes P and @

P:c—>(a—>STOP M b—>5TOP>
Q=c—>a—STOP M1 ¢c— b— STOP

e These are equivalent, however, they are checkpointed in
different ways after c.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 42/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Future Work

“On" -process checkpoint

P = Ch2(a— STOP 1 b— STOP,
a— STOP 1 b— STOP)
and
Q = Ch2(a — STOP,a — STOP)
or Ch2(b— STOP,b — STOP)

e Some investigation needs to be put into whether or not
it is possible to create Ch2(P, Q) for all processes.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 43/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Future Work

e The programmer needs to make sure that the processes
do not have side-effects. No warnings are given.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 44/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Future Work

e The checkpoints could be used as a starting point for
other processes.
e In a real-world application, the processes could be
stopped, moved and restarted at the same point on
different hardware.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 45/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Replayable Messages

e We want to be able to replay messages sent to a process.

e If a process goes into an exception state, an
intermediate process should replay all still valid
messages to the same channel.

e Of course only applicable on one-to-any and any-to-any
channels.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 46/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Replayable Messages

e A message is valid, as long as the process receiving it
says it is valid.

e That is, a process receiving can deem a message invalid.

e When deeming any one message invalid, you deem all
prior messages invalid as well.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012 .
Slide 47/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Replayable Messages

e The intermediate process has a list of messages.
e It can add to this list as well as delete the list entirely.

e Of course it is able to replay all messages, removing
them individually from the list as well.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012 .
Slide 48/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENC

Replayable Messages

=@
ovde . o>Lo—e
O @ M@=

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012 .
Slide 49/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIE

Replayable Messages

li =Ry
where
Rs = c?x = ¢j!x = Rs~(y O ¢j.replay — R.
O cj.delete — R()
Ry = Ro

Riyy~s = Clx = Rl

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 50/53

UNIVERSITY

OO~ U kA WN -

OF COPENHAGEN

Replayable Messages

from pycsp_import import =

@process
def producer(job_out):
for i in range(-10, 0):
job_out (i)

job_out ("replay")

for i in range(0, 11):
job_out (i)

while True:
job_out("retire")

@process
def worker(job_in, job_out):
while True:
x = job_in()
job_out (x * 2)

© 00U A WN =

DEPARTMENT

@process
def replayer(job_in, job_out, replay):
jobs = [1
while True:
x = job_in()

if x == "delete":
jobs =[]

elif x == "replay":
for j in jobs:

replay(j)

jobs = [1

elif x == "retire":
raise ChannelRetireException

else:
jobs.append (x)
job_out (x)

@process

def consumer (job_in):
while True:
print job_in()

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 51/53

OF COMPUTER SCIENC

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENC

Replayable Messages

1 -20
2 -18
3 -16
4 -14
5 -12
1 ¢ = Channel() 6 -10
2 c1,c2,c3 = Channel(),Channel(),Channel () 7 -8
3 d = Channel() 8 -6
4 9 -4
5 Parallel(10 -2
6 producer(-c), 11 >>> -18
7 replayer(+c, -c1, -c), 12 0
8 replayer(+c, -c2, -c), 13 >>> -12
9 replayer(+c, -c3, -c), 14 2
10 worker (+c1, -d), 15 >>> -6
11 worker (+c2, -d), 16 4
12 worker (+c3, -d), 17 6
13 consumer (+d) 18 8
14) 19 10
20 12
21 14
22 16
23 18
24 20

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 52/53

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIEN

Thank you very much

Questions?

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012
Slide 53/53

	Motivation
	Back to Basics
	Supervisor Paradigm
	Poison
	Retirement

	Exception Handling
	Fail-stop
	Retire-like Fail-stop

	Checkpointing
	Conclusions
	Future Work

