
department of computer sc i ence

university of copenhagen

Exception Handling in Communicating
Sequential Processes

Mads Ohm Larsen
Copenhagen University: Department of Computer Science

4. september 2012

Slide 1/53

un i v er s i ty of copenhagen department of computer sc i ence

Outline

1 Motivation

2 Back to Basics

3 Supervisor Paradigm
Poison
Retirement

4 Exception Handling
Fail-stop
Retire-like Fail-stop

5 Checkpointing

6 Conclusions

7 Future Work

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 2/53

un i v er s i ty of copenhagen department of computer sc i ence

Outline

1 Motivation

2 Back to Basics

3 Supervisor Paradigm
Poison
Retirement

4 Exception Handling
Fail-stop
Retire-like Fail-stop

5 Checkpointing

6 Conclusions

7 Future Work

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 3/53

un i v er s i ty of copenhagen department of computer sc i ence

Motivation
Why Should We Care?

• Reliable software is able to handle exceptions.

• Most programming languages today can handle
exceptions internally.

• Using CSP we should be able to let other processes
handle an exception.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 4/53

un i v er s i ty of copenhagen department of computer sc i ence

Outline

1 Motivation

2 Back to Basics

3 Supervisor Paradigm
Poison
Retirement

4 Exception Handling
Fail-stop
Retire-like Fail-stop

5 Checkpointing

6 Conclusions

7 Future Work

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 5/53

un i v er s i ty of copenhagen department of computer sc i ence

Back to Basics
What is Communication?

• A communication is an event done by two or more
processes in parallel.

One-to-one

P = c!x → P ′

Q = c?x → Q ′(x)

O2O = P ||Q

P Q
c

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 6/53

un i v er s i ty of copenhagen department of computer sc i ence

Back to Basics
What is Communication?

• Any-to-any channels can be “created” with the use of
the interleaving operator.

Any-to-any

Pi = c!x → P ′i

Qj = c?x → Q ′j (x)

A2A =

(
|||

i∈1..n
Pi

)
||

(
|||

j∈1..m
Qj

)
P1

P2

Pn

Q1

Q2

Qm

c

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 7/53

un i v er s i ty of copenhagen department of computer sc i ence

Outline

1 Motivation

2 Back to Basics

3 Supervisor Paradigm
Poison
Retirement

4 Exception Handling
Fail-stop
Retire-like Fail-stop

5 Checkpointing

6 Conclusions

7 Future Work

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 8/53

un i v er s i ty of copenhagen department of computer sc i ence

Supervisor Paradigm
Meet the Supervisor

• A supervisor overlooks the channel.

• It controls which communication events are allowed, by
engaging in them.

P Q

Sok

c

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 9/53

un i v er s i ty of copenhagen department of computer sc i ence

Supervisor Paradigm
Meet the Supervisor

P1

P2

Pn

Q1

Q2

Qm

Sok

c

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 10/53

un i v er s i ty of copenhagen department of computer sc i ence

Supervisor Paradigm
Meet the Supervisor

• Let us look at the supervisor process.

Supervisor

Sok =
(
d : {c .m | m ∈ αc}

)
→ Sok

• Right now this allows for all communication, when run
in parallel, however it can be modified for both poison,
retirement and exception handling.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 11/53

un i v er s i ty of copenhagen department of computer sc i ence

Poison
Killing a Network

• Each process should be able to shut down.

• In various implementations of CSP we have a poison
construct to shut down a network.

• The supervisor process can be altered to encompass
poison.

• It must have a unique event, for each other process, that
should be able to poison the channel, it overlooks.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 12/53

un i v er s i ty of copenhagen department of computer sc i ence

Poison
Killing a Network

Poison

Sok =
((

d : {c .m | m ∈ αc}
)
→ Sok

)
2
(
~
id
cpid → Se

)

Se = cpoison → Se 2 SKIP

Pi =
(
c!x → P ′i

)
2
(
cpoison → Ppi

)
Qj =

(
c?x → Q ′j (x)

)
2
(
cpoison → Qpj

)

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 13/53

un i v er s i ty of copenhagen department of computer sc i ence

Poison
Killing a Network

Poison

POISONA2A =

(
|||

i∈1..n
Pi

)
||

(
|||

j∈1..m
Qj

)
||Sok

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 13/53

un i v er s i ty of copenhagen department of computer sc i ence

Poison
Killing a Network

P1

P2

Pn

Q1

Q2

Qm

Sok

c

cpid

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 14/53

un i v er s i ty of copenhagen department of computer sc i ence

Retirement
Shutting Down a Network

• Retirement is poisons less aggressive brother.

• We count reader and writers. A channel is retired if
either reaches zero.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 15/53

un i v er s i ty of copenhagen department of computer sc i ence

Retirement
Shutting Down a Network

Retirements Supervisor

Sok(0,) = Se

Sok(, 0) = Se

Sok(n,m) =
(

(d : {c .me | me ∈ αc})→ Sok (n,m)
)

~
id

(
crwid

→ Sok(n − 1,m)
)

~
id

(
crrid → Sok(n,m − 1)

)
Se = cretire → Se 2 SKIP

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 16/53

un i v er s i ty of copenhagen department of computer sc i ence

Retirement
Shutting Down a Network

Retirement Network

RETIREA2A =

(
|||

i∈1..n
Pi

)
||

(
|||

j∈1..m
Qj

)
||Sok(n,m)

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 17/53

un i v er s i ty of copenhagen department of computer sc i ence

Outline

1 Motivation

2 Back to Basics

3 Supervisor Paradigm
Poison
Retirement

4 Exception Handling
Fail-stop
Retire-like Fail-stop

5 Checkpointing

6 Conclusions

7 Future Work

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 18/53

un i v er s i ty of copenhagen department of computer sc i ence

Exception Handling
How Do We Handle Exceptions?

• CSP already offers to interrupt a process via the
interrupt operator.

Interrupt

P ∆ Q

• This behaves as P but is interrupted on the first
occurrence of an event of Q.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 19/53

un i v er s i ty of copenhagen department of computer sc i ence

Exception Handling
How Do We Handle Exceptions?

• We call an outside-error a catastrophe � .

• A process that behaves as P up until a catastrophe and
then behaves as Q is defined by

Catastrophe

P �̂ Q = P ∆ (� → Q)

• Roscoe continues this, and creates the throw operator

Throw operator

P Θx :A Q(x)

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 20/53

un i v er s i ty of copenhagen department of computer sc i ence

Exception Handling
How Do We Handle Exceptions?

• We can catch all errors in a process with this throw
operator.

Caught

Pi = (c!x → P ′i) Θerror Pei

Qj = (c?x → Q ′j (x)) Θerror Qej

• The Pei and Qej processes could be telling the supervisor
that the process in hand is in an exception state.

Handled

Pei = cei → SKIP

Qej = cej → SKIP

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 21/53

un i v er s i ty of copenhagen department of computer sc i ence

Fail-stop
Press the Big Red Button

• Fail-stop is just like poison.

• It occurs when a process goes into an exception state.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 22/53

un i v er s i ty of copenhagen department of computer sc i ence

Fail-stop
Press the Big Red Button

P

W1

W2

C
c d

Θ poisons its channels

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 23/53

un i v er s i ty of copenhagen department of computer sc i ence

Fail-stop
Press the Big Red Button

1 from pycsp_import import *
2
3 @process
4 def producer(job_out):
5 for i in range(-10, 11):
6 job_out(i)
7
8 @process(fail_type = FAILSTOP)
9 def worker(job_in, job_out):

10 while True:
11 x = job_in()
12 job_out(1.0/x)
13
14 @process
15 def consumer(job_in):
16 try:
17 while True:
18 x = job_in()
19 print x
20 except ChannelFailstopException:
21 print "Caught the exception"
22
23 c = Channel()
24 d = Channel()

1 Parallel(
2 producer(-c),
3 3 * worker(+c, -d),
4 consumer(+d)
5)

1 -0.1
2 -0.111111111111
3 -0.125
4 -0.142857142857
5 -0.166666666667
6 -0.2
7 -0.25
8 -0.333333333333
9 -0.5

10 -1.0
11 1.0
12 Caught the exception

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 24/53

un i v er s i ty of copenhagen department of computer sc i ence

Retire-like Fail-stop
Press the Slightly Smaller Red Button

• Of course, retire-like fail-stop works like retire.

Retire-like network

P0 = P ′0 = SKIP

Px = c!x → Px−1 Θ P ′x

P ′x = d!x → P ′x−1

F = c?x → f !(x · 2)→ F

W = d?x → f !(x · 2)→W

C = f ?x → print!x → C

Rnet =
(
I (P10) ||

(
I (F) ||| I (W)

)
|| I (C)

)
||Sok(1, 1) ||Tok(1, 1) ||Uok(2, 1)

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 25/53

un i v er s i ty of copenhagen department of computer sc i ence

Retire-like Fail-stop
Press the Slightly Smaller Red Button

1 from pycsp_import import *
2
3 @process(fail_type = RETIRELIKE)
4 def producer(cout, dout, job_start,
5 job_end):
6 try:
7 for i in range(job_start, job_end):
8 cout(i)
9 except ChannelRetireLike...

10 FailstopException:
11 for i in range(i, job_end):
12 dout(i)
13
14 @process(fail_type = RETIRELIKE)
15 def failer(cin, fout):
16 while True:
17 x = cin()
18 fout(x*2)
19 raise Exception("failed hardware")
20
21 @process(fail_type = RETIRELIKE)
22 def worker(din, fout):
23 while True:
24 x = din()
25 fout(x*2)

1 @process(fail_type = RETIRELIKE)
2 def consumer(finish):
3 while True:
4 x = finish()
5 print x
6
7 c = Channel()
8 d = Channel()
9 f = Channel()

10
11 Parallel(
12 producer(-c, -d, -10, 10),
13 failer(+c, -f),
14 worker(+d, -f),
15 consumer(+f)
16)

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 26/53

un i v er s i ty of copenhagen department of computer sc i ence

Retire-like Fail-stop
Press the Slightly Smaller Red Button

1 -20
2 failed hardware
3 -18
4 -16
5 -14
6 -12
7 -10
8 -8
9 -6

10 -4
11 -2
12 0
13 2
14 4
15 6
16 8
17 10
18 12
19 14
20 16
21 18

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 27/53

un i v er s i ty of copenhagen department of computer sc i ence

Outline

1 Motivation

2 Back to Basics

3 Supervisor Paradigm
Poison
Retirement

4 Exception Handling
Fail-stop
Retire-like Fail-stop

5 Checkpointing

6 Conclusions

7 Future Work

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 28/53

un i v er s i ty of copenhagen department of computer sc i ence

Checkpointing
We Can Roll Back Our Mistakes

• We want a way to roll back to last valid checkpoint.

• A checkpoint is rendered invalid on side-effects, from
the process, that is, printing, communicating, writing to
files and so on.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 29/53

un i v er s i ty of copenhagen department of computer sc i ence

Checkpointing
We Can Roll Back Our Mistakes

• Let us create a process Ch(P) which checkpoints P.

• As we want to keep the latest checkpoint, we need an
auxiliary process Ch2(P,Q).

• Here P is the process and Q is the latest checkpoint.

Checkpointing Process

Ch(P) = Ch2(P,P)

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 30/53

un i v er s i ty of copenhagen department of computer sc i ence

Checkpointing
We Can Roll Back Our Mistakes

Checkpointing Process

Ch(P) = Ch2(P,P)

• If c© is a checkpoint event, r© is a roll back event, and
P =

(
x : A→ P(x)

)
then Ch2(P,Q) can be defined as

Aux. Checkpointing

Ch2(P,Q) =
(
x : A→ Ch2(P(x),Q)

| c© → Ch2(P,P)
)

Θ r© → Ch2(Q,Q)

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 31/53

un i v er s i ty of copenhagen department of computer sc i ence

Checkpointing
We Can Roll Back Our Mistakes

• With this we can checkpoint an entire network with

Checkpoint a Network

Ch(P ||Q)

• ... or individual processes with

Checkpoint a Process

Ch(P) ||Ch(Q)

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 32/53

un i v er s i ty of copenhagen department of computer sc i ence

Checkpointing
We Can Roll Back Our Mistakes

• Having just one c© will require every process to
checkpoint at the same time.

• A better way is to have all processes which engages in a
communication to checkpoint at the same time.

• Recalling that processes on each side of the
communication are interleaving, only two of them will
checkpoint, the sender and the receiver.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 33/53

un i v er s i ty of copenhagen department of computer sc i ence

Checkpointing
We Can Roll Back Our Mistakes

• This requires a small change to Ch2.

New Aux. Checkpointing

Ch2(P,Q) =
(
x : A→ Ch2(P(x),Q)

~
c∈αP

(
c©c → Ch2(P,P)

))
Θ

~
c∈αP

r©c → Ch2(Q,Q)

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 34/53

un i v er s i ty of copenhagen department of computer sc i ence

Checkpointing
We Can Roll Back Our Mistakes

• The supervisor will have to be in on the checkpointing,
so we change it to

New Aux. Checkpointing

Sok =
(
d : {c .me | me ∈ c}

)
→ c©c → Sok

2
(

r©c → Sok

)
• To keep it simple this is missing all the poison and retire

abilities.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 35/53

un i v er s i ty of copenhagen department of computer sc i ence

Checkpointing
We Can Roll Back Our Mistakes

A

B

Cc
f

Figure: Programming model

A A′

B B ′

Cc

a

b

f

Figure: CSP model

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 36/53

un i v er s i ty of copenhagen department of computer sc i ence

Checkpointing
We Can Roll Back Our Mistakes

Checkpointing network

A = c!(”Ping”)→ c?y → a!y → A

A′ = a?x → f !x → A′

B = c?x → c!(”Pong”)→ b!x → B

B ′ = b?x → f !x → B ′

C0 = fpoison → SKIP

Cn = f ?x → print!x → Cn−1

CPNet =
(
Ch(A) ||Ch(B)

)
||
(
Ch(A′) |||Ch(B ′)

)
||Ch(C100)

||Sok(2, 2) ||Tok(1, 1) ||Uok(1, 1) ||Vok(2, 1)

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 37/53

un i v er s i ty of copenhagen department of computer sc i ence

Checkpointing
We Can Roll Back Our Mistakes

1 from pycsp_import import *
2 from random import randint
3
4 @process(fail_type = CHECKPOINT)
5 def A(cout, cin, fout):
6 while True:
7 cout("Ping")
8 fout(cin())
9

10 @process(fail_type = CHECKPOINT,
11 retries = -1)
12 def B(cout, cin, fout):
13 while True:
14 x = cin()
15 cout("Pong")
16 # This next line fails
17 # roughly half the time
18 1/randint(0, 1)
19 fout(x)
20
21 @process(fail_type = CHECKPOINT)
22 def C(fin, num):
23 i = load(i = 1)
24 for i in range(i, num):
25 f = fin()
26 print i, f
27 poison(fin)

1 c = Channel()
2 f = Channel()
3
4 Parallel(
5 A(-c, +c, -f),
6 B(-c, +c, -f),
7 C(+f, 100)
8)

1 0 Ping
2 1 Pong
3 2 Ping
4 3 Pong
5 4 Ping
6 5 Pong
7 6 Ping
8 7 Pong
9 8 Ping

10 ...
11
12
13
14
15 ...
16 99 Pong

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 38/53

un i v er s i ty of copenhagen department of computer sc i ence

Outline

1 Motivation

2 Back to Basics

3 Supervisor Paradigm
Poison
Retirement

4 Exception Handling
Fail-stop
Retire-like Fail-stop

5 Checkpointing

6 Conclusions

7 Future Work

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 39/53

un i v er s i ty of copenhagen department of computer sc i ence

Conclusions

• Presented a supervisor paradigm
• This is helping poison, retirement as well as exception

handling.

• Shown and implemented fail-stop and retire-like
fail-stop.

• Shown and implemented checkpointing and roll back.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 40/53

un i v er s i ty of copenhagen department of computer sc i ence

Outline

1 Motivation

2 Back to Basics

3 Supervisor Paradigm
Poison
Retirement

4 Exception Handling
Fail-stop
Retire-like Fail-stop

5 Checkpointing

6 Conclusions

7 Future Work

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 41/53

un i v er s i ty of copenhagen department of computer sc i ence

Future Work

• Only works on on-processes, as described by Roscoe in
On the expressiveness of CSP, feb. 2011

• If the process is not on the form P = (x : A→ P(x)) we
cannot create Ch2(P,Q).

• Let us say we have two processes P and Q

“On”-process

P = c →
(
a→ STOP u b → STOP

)
Q = c → a→ STOP u c → b → STOP

• These are equivalent, however, they are checkpointed in
different ways after c .

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 42/53

un i v er s i ty of copenhagen department of computer sc i ence

Future Work

“On”-process checkpoint

P ⇒ Ch2(a→ STOP u b → STOP,

a→ STOP u b → STOP)

and

Q ⇒ Ch2(a→ STOP, a→ STOP)

or Ch2(b → STOP, b → STOP)

• Some investigation needs to be put into whether or not
it is possible to create Ch2(P,Q) for all processes.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 43/53

un i v er s i ty of copenhagen department of computer sc i ence

Future Work

• The programmer needs to make sure that the processes
do not have side-effects. No warnings are given.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 44/53

un i v er s i ty of copenhagen department of computer sc i ence

Future Work

• The checkpoints could be used as a starting point for
other processes.

• In a real-world application, the processes could be
stopped, moved and restarted at the same point on
different hardware.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 45/53

un i v er s i ty of copenhagen department of computer sc i ence

Replayable Messages

• We want to be able to replay messages sent to a process.

• If a process goes into an exception state, an
intermediate process should replay all still valid
messages to the same channel.

• Of course only applicable on one-to-any and any-to-any
channels.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 46/53

un i v er s i ty of copenhagen department of computer sc i ence

Replayable Messages

• A message is valid, as long as the process receiving it
says it is valid.

• That is, a process receiving can deem a message invalid.

• When deeming any one message invalid, you deem all
prior messages invalid as well.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 47/53

un i v er s i ty of copenhagen department of computer sc i ence

Replayable Messages

• The intermediate process has a list of messages.

• It can add to this list as well as delete the list entirely.

• Of course it is able to replay all messages, removing
them individually from the list as well.

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 48/53

un i v er s i ty of copenhagen department of computer sc i ence

Replayable Messages

P1

P2

Pn

Q1

Q2

Qm

c

⇒

P1

P2

Pn

I1

I2

Im

Q1

Q2

Qm

c1

cm

c

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 49/53

un i v er s i ty of copenhagen department of computer sc i ence

Replayable Messages

Intermediate Process

Ij = R()

where

Rs = c?x → cj !x → Rs_{x} 2 cj .replay → R ′s

2 cj .delete → R()

R ′() = R()

R ′{x}_s = c!x → R ′s

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 50/53

un i v er s i ty of copenhagen department of computer sc i ence

Replayable Messages

1 from pycsp_import import *
2
3 @process
4 def producer(job_out):
5 for i in range(-10, 0):
6 job_out(i)
7
8 job_out("replay")
9

10 for i in range(0, 11):
11 job_out(i)
12
13 while True:
14 job_out("retire")
15
16 @process
17 def worker(job_in, job_out):
18 while True:
19 x = job_in()
20 job_out(x * 2)

1 @process
2 def replayer(job_in, job_out, replay):
3 jobs = []
4 while True:
5 x = job_in()
6
7 if x == "delete":
8 jobs = []
9 elif x == "replay":

10 for j in jobs:
11 replay(j)
12 jobs = []
13 elif x == "retire":
14 raise ChannelRetireException
15 else:
16 jobs.append(x)
17 job_out(x)
18
19 @process
20 def consumer(job_in):
21 while True:
22 print job_in()

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 51/53

un i v er s i ty of copenhagen department of computer sc i ence

Replayable Messages

1 c = Channel()
2 c1,c2,c3 = Channel(),Channel(),Channel()
3 d = Channel()
4
5 Parallel(
6 producer(-c),
7 replayer(+c, -c1, -c),
8 replayer(+c, -c2, -c),
9 replayer(+c, -c3, -c),

10 worker(+c1, -d),
11 worker(+c2, -d),
12 worker(+c3, -d),
13 consumer(+d)
14)

1 -20
2 -18
3 -16
4 -14
5 -12
6 -10
7 -8
8 -6
9 -4

10 -2
11 >>> -18
12 0
13 >>> -12
14 2
15 >>> -6
16 4
17 6
18 8
19 10
20 12
21 14
22 16
23 18
24 20

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 52/53

un i v er s i ty of copenhagen department of computer sc i ence

Thank you very much

Questions?

Mads Ohm Larsen — Exception Handling in CSP — 4. sep. 2012

Slide 53/53

	Motivation
	Back to Basics
	Supervisor Paradigm
	Poison
	Retirement

	Exception Handling
	Fail-stop
	Retire-like Fail-stop

	Checkpointing
	Conclusions
	Future Work

